
UTFRC - Utility-driven TCP-Friendly Rate Control for Multimedia Streams

Adrian Sterca
Department of Computer Science

Babes-Bolyai University
Cluj-Napoca, M. Kogalniceanu No.1, Romania

Email: forest@cs.ubbcluj.ro

Abstract

This paper describes UTFRC - Utility-driven TCP-
Friendly Rate Control, a congestion control mechanism more
suitable for streaming layered scalable video streams in
best-effort networks than TFRC [2]. UTFRC relies on the
original TFRC for achieving a stable throughput, but uses
the throughput outputted by TFRC only as a guideline and
shapes this throughput, on a coarser granularity scale,
according to media characteristics of the video stream.
This way, UTFRC is TCP-friendly when computing avail-
able bandwidth, but it is also media-sensitive (i.e., media-
friendly). We present two versions of UTFRC, a simple one
based only on bitrate properties of the video stream and
an advanced one which takes into account also the client
prefetching buffer value, but other media characteristics of
the stream can also be considered. UTFRC improves the
perceived quality of video streams in best-effort network
conditions.

1. Introduction

In the last decade, multimedia communication and real-
time streaming over the Internet has received much attention
from the scientific community. Due to their high bandwidth
demands and almost isochronous communication, multime-
dia streaming applications like VoD (Video on Demand),
video conferencing and live broadcasting applications still
face many challenges nowadays. The Internet does not guar-
antee a constant level of service because of its heterogeneity
and best-effort nature, forcing streaming applications to
continuously adapt their bitrate/quality demands to changing
QoS parameters of the network (i.e., they must perform
congestion control). If applications fail to do so or choose
not to do so, the perceived quality of service at the end user
is decreased and it also might lead to congestion collapse,
damaging the work of other network flows. A congestion-
unresponsive application also manifests unfairness to other
flows competing for the same network resources.

TCP’s AIMD (Additive Increase Multiplicative Decrease)
congestion control is not well suited for multimedia streams
[8] due to its highly fluctuating throughput. Consequently,
other congestion control algorithms which offer a smoother

throughput were developed [1], [4], [5], [6], [7], perhaps the
most well known being TFRC (TCP-Friendly Rate Control)
[2]. All these smooth congestion controls have a more
stable throughput than TCP’s AIMD because they are less
aggressive than TCP in using new available bandwidth, but
they are also slower responsive to congestion than TCP.
Because they offer a more stable throughput, multimedia
streams, especially CBR (Constant Bit Rate) ones, but also
VBR (Variable Bit Rate) ones, can be better adapted to
predictable bandwidths by the streaming servers. However,
although smooth congestion controls improve the delivery
of multimedia streams, they are not the optimal solution,
because they don’t take into consideration media character-
istics of the stream (i.e. they are not media-friendly).

The rest of the paper is organized as follows. In section 2
we review related work. Then section 3 provides an intuitive
description of the ideas and goals behind Utility-driven
TFRC. The main body of the paper is in sections 4 and 5
which describe in details a simple Utility-driven TFRC and
an advanced Utility-driven TFRC, respectively. The paper
continues with section 6 which describes experiments that
prove UTFRC usefulness for multimedia streaming and ends
with conclusions in section 7.

2. Related work

The TCP-Friendly Rate Control [1], [2] is a rate-based
congestion control that has two main components: the
throughput function and the WALI (i.e., Weighted Average
Loss Intervals) mechanism for computing the loss rate. The
throughput function is the throughput equation of a TCP-
Reno source [3]:

X(p) =
s

R
√

2p
3 + tRTO(3

√
3p
8)p(1 + 32p2)

, (1)

where X is the sending rate in bytes/sec, s is the packet
size, R is the round-trip time (RTT), p is the steady-state
loss event rate and tRTO = 4 ∗ R is the TCP retransmit
timeout value. This throughput function is behind TCP-
friendliness of TFRC. WALI, the mechanism for computing
the loss rate as a weighted average of the last 8 loss intervals,
is responsible for the smoothness of throughput. Studies
reveal that indeed TFRC’s throughput is smoother than the

throughput of TCP [9], [10], [11], but it also has some
limitations [12], [13] which will be further discussed in the
next section. We would like to mention that other proposals
for smooth TCP-friendly congestion control exist [4], [5],
[6], [7].

The work presented in [14] is the closest to our work.
Authors develop a media- and TCP-friendly congestion
control based on TFRC using a two-timescale approach:
they compute the long term average of throughput according
to TFRC, but they modify this throughput on a smaller
timescale according to the rate of increase/decrease of an
utility function obtained from the rate-distortion character-
istics of the stream. We have two observations related to
this paper. First, the utility function it is used was developed
for MPEG FGS (Fine Granularity Scalable) video streams,
so the algorithm does not seem to work for other type
of streams, while UTFRC is general and works for any
video streams (i.e. it can use various stream characteristics).
Second, since the rate-distortion utility function is not scaled
with TFRC’s throughput we are not sure that the derivative
of the utility function will have significant influence on
TFRC’s throughput (even on small timescales) in all network
scenarios.

A total different approach in congestion control derived
from optimization theory is taken in [15], [16], [17], [18].
Kelly et al. formulates the problem of sharing bandwidth in
a best-effort network as an optimization problem [15] and
derives two gradient-like algorithms, a primal algorithm and
a dual, to control the congestion in the Internet in an end-to-
end way and to obtain optimal bandwidth allocation among
competing sources. The primal algorithm is a window-based
congestion control, while the dual is rate-based. Low et al.
also provides a dual-type algorithm for achieving optimal
bandwidth allocation and congestion control [16]. However,
all aforementioned papers use general utility functions and
they don’t consider the specific characteristics of multimedia
streaming applications.

3. Motivation and rationale behind UTFRC

TCP throughput equation (1) used in TFRC is supposed
to be an upper bound on the sending rate of a TCP flow.
However, several arguments determine us to say that this
TCP throughput equation should be thought only as a guide-
line (not upper bound nor lower bound) of the throughput
achieved by a TCP flow:
• the TCP throughput equation is derived in [3] under

simplified assumptions;
• the TCP throughput equation characterizes a TCP Reno

flow, while other TCP flows like TCP-Sack can be
more aggressive and TCP-Reno is not used any more
in modern TCP stacks;

• the loss rate p from the equation is computed differently
in [3] than the loss rate from TFRC;

• Milan Vojnovic et al. [19] present some experiments
which show that sometimes TCP overshoots or un-
dershoots the throughput predicted by the TCP Reno
equation;

Also, because the WALI mechanism computes the loss rate
as an average over several RTTs, thus making TFRC’s
throughput a smoothed average version of the throughput
achieved by a TCP connection in the same network con-
ditions, the instantaneous throughput and sometimes the
long-run throughput of TFRC can be sometimes smaller,
sometimes higher than the throughput of a TCP flow [12].

Hence, the throughput given by TFRC can be considered
as a guideline throughput for a smoothed averaged TCP
throughput.

In the view of the aforementioned observations, we argue
that for a multimedia streaming application following blindly
the transmission rate given by TFRC is good from a network
perspective and good but not optimal from the application’s
perspective. In other words, TFRC is too much ”network
friendly” and less ”media-friendly”.

On the other hand, VBR codecs like MPEG can vary a
lot the outputted bitrate of a video stream between scene
changes in order to preserve a relative constant quality
throughout the video (e.g. the bitrate can vary 20 times from
one stream second to the next one) [20]. In other words, the
bitrate of such a stream is certainly not smooth. You can
see in Fig. 1 the bitrate evolution for a part (between stream
seconds 40 and 180) of a typical MPEG-4 video stream.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 40 60 80 100 120 140 160 180

B
it
ra

te
 (

b
y
te

s
)

Stream seconds

1-second bitrate

Figure 1. The 1-second bitrates of a typical MPEG-4
stream

Please note that bitrate variability is higher for other video
streams with more abrupt scene changes. If the bitrate of a
stream is not smooth and, generally, if media characteristics
are not smooth (relatively constant) across the stream, then

perhaps the best transmission rate a congestion control can
give is not necessarily a smooth one, but a transmission rate
that tracks the evolution of media characteristics (e.g. bitrate)
across the stream. Of course, this transmission rate must also
obey network-related characteristics (i.e. must have a TCP-
friendly shape). This is especially true for live streaming
that doesn’t afford to maintain a reasonable prefetch buffer
at the client. An intuitive example of what we have in mind
can be seen in Fig. 2 where the bitrate of the stream is used
as an utility vector.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 40 60 80 100 120 140 160 180

T
h
ro

u
g

h
p
u

t
(b

y
te

s
/s

e
c
)

Time (seconds)

TFRC
UTFRC

Figure 2. TFRC throughput modified according to the
bitrate of the stream

In Fig. 2 we see with continuous line a typical evolution
of the transmission rate (throughput) of a TFRC flow and
with interrupted line the same throughput modified to track
the evolution of bitrate of the stream from Fig. 1. We can
see that TFRC’s throughput is increased between seconds
112-150 because the bitrates of seconds 112-150 are higher
in Fig.1, but in the same time, throughput is decreased in
seconds 42-90, because the bitrates between these seconds
are low in Fig. 1.

In the lines above we have used only a simple metric
of utility - that is the 1-second bitrates of the stream,
but other media characteristics can be used in quantifying
the utility of a throughput: bitrate averaged over a scene,
quality measures, PSNR values, client buffer value etc.
In conclusion, by the name UTFRC (Utility-driven TCP-
Friendly Rate Control) we refer to a congestion control
which computes the transmission rate in the following way:

XUTFRC(t) = U(q) ∗XTFRC(t) (2)

where t is time, XTFRC(t) is the transmission rate
computed by TFRC at time t using equation (1), U(q) is an

utility function with values in the interval [0.8, 1.2] and q is
a vector variable that includes various media characteristics.
The function U(q) embodies the usefulness of increasing
TFRC’s throughput passed the rate computed with (1) to
the streaming application. We have chosen the interval
[0.8, 1.2] because we think that the increase or decrease of
TFRC’s throughput should be within maximum 20 % of
the throughput in order to remain TCP-friendly on the short
term. We haven’t studied utility values greater than 1.2 or
smaller than 0.8.

We want to make sure that our congestion control
algorithm described by equation (2) remains TCP-Friendly
on the long term. That is, if we have two flows sharing
the same network path and the first flow uses UTFRC, but
the second one uses TFRC, we want to make sure that the
bandwidth used by the first flow is approximately equal to
the bandwidth used by the second flow throughout their
existence, assuming they last a significant period of time. If
we consider the transmission rate instances of both TFRC
and UTFRC and we take the expectations of both we get:

E[XUTFRC(t)] = E[U(q) ∗XTFRC(t)] =
E[U(q)] ∗ E[XTFRC(t)]

where the last equality results from the fact that U(q)
is statistically independent of XTFRC(t) as the first one
includes only media parameters and the second one includes
only network parameters. If we further choose the utility
function U(q) in such a way that E[U(q)] = 1 then the
expected transmission rate (bandwidth) of TFRC is equal
with the expected transmission rate (bandwidth) of UTFRC.

4. Simple utility-driven TFRC

A very simple variant of utility-driven TFRC can be
obtained by multiplying the throughput computed by TFRC
with the value b

bavg
, where b is the bitrate measured in bytes

for the current second of stream and bavg is the average
bitrate over the whole stream (This rule was used in the
throughput of UTFRC from Fig.2, for example).

XUTFRC(t) =
(

bi

bavg

)
XTFRC(t) (3)

for the i-th stream second.
Among the advantages of this simple UTFRC we mention:

it is very simple to implement and is not time consuming
during streaming, especially if the bitrate for each second is
computed off-line (the average bitrate has to be computed
off-line). However it has some disadvantages: it doesn’t
consider other media characteristics besides bitrate like
client buffer value, PSNR and also, we don’t have a strict
control over the increase and decrease of TFRC’s throughput
- that is, it is very possible that b

bavg
is greater than 1.2

or smaller than 0.8 and we think that increase or decrease

should be within maximum 20 % of the throughput in order
to remain TCP-friendly on the short term.

5. Advanced utility-driven TFRC - UTFRC

A more advanced utility-driven TFRC can be built if we
consider also the client buffer value besides bitrate in the
following intuitive way:
• if the client prefetch buffer is small (e.g. smaller than

a threshold), the utility should be high, because if we
don’t have a large enough throughput we might get an
empty buffer at the client and stream playing can freeze;

• if the buffer is large then the utility should be small,
but still it should follow the slope of the bitrate;

The throughput of our advanced UTFRC is depicted in
the equation below:

XUTFRC(t) = U(b,∆) ∗XTFRC(t) (4)

where b is the bitrate for the current stream second and ∆ is
the number of stream seconds saved in the client’s prefetch
buffer. U(b,∆) has values in the interval [0.8, 1.2] and has
the following form:

U(b,∆) = 0.8 + Ub(b) + U∆(∆) (5)

Ub(b) is responsible for 3/4 of the total utility and is a
linear mapping of current second’s bitrate b from the interval
[bmin, bmax] of all possible 1-second bitrates of the stream
(bmin refers to the minimum 1-second bitrate from the whole
stream and bmax to the maximum 1-second bitrate) to the
interval [0, 0.3]:

Ub(b) =
3
10
∗ b− bmin

bmax − bmin
(6)

Function U∆(∆) is responsible for 1/4 of the total utility
and takes values in the interval [0.05, 0.1] when ∆ is smaller
than a threshold value and in the interval [0, 0.05] when ∆
is greater than the threshold value. The expression of the
function is given bellow:

U∆(∆) =





1
10

(
1− ∆

2threshold −max
(
0, threshold−E[∆]

2threshold

)+
)

, ∆ ≤ threshold

1
20

(
1− ∆−threshold

∆max−threshold

)
, ∆ > threshold

(7)
where E[∆] is the average buffer value from the beginning
of the streaming session up to now and ∆max is a reasonable
maximum buffer value. The term max

(
0, threshold−E[∆]

2threshold

)

was introduced as an incentive for applications which main-
tain a lower buffer in order to get a higher utility and, thus,
a larger throughput; for those applications the value E[∆]
is small and because of this term U∆(∆) gets smaller with
time.

One final note about the advanced UTFRC. The utility
function uses the value of the client buffer, ∆, which is
computed by the client, but it must be available at the server.
This value must be fed back to the server which introduces
a delay of one round-trip time in the decision of the server,
but this is no worse than TFRC as it reacts to congestion
also after a round-trip time.

6. Experiments

We have performed some simulations using the ns-
simulator with the simple UTFRC modified so that the
utility is incremented by 0.8 when the buffer becomes really
small. We have a single 7.1 Mbps link shared by 16 TCP-
Reno flows and one multimedia flow. In the first experiment
we have used TFRC for the multimedia flow, while in
the second experiment we have used the simple UTFRC
modified as stated above for the multimedia flow. In the
TFRC and UTFRC source we simulated the prefetch client
buffer which is loaded according to the throughput computed
by TFRC/UTFRC and consumed by the player according to
the bitrate of the stream (see Fig. 5). The results are shown
in Fig. 3 and Fig. 4. Fig. 5 presents the bitrate of the stream.

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200

T
h

ro
u

g
h
p

u
t
(b

y
te

s
/s

e
c
)

Time (seconds)

TFRC
UTFRC

Figure 3. TFRC throughput versus simple UTFRC
throughput

We can see in Fig. 3 the evolution of the throughput of
TFRC and UTFRC and the evolution of the buffer for TFRC
and UTFRC in Fig. 4. The benefits of using UTFRC are
clear in Fig. 4 where we can see that the client prefetch
buffer becomes empty several times (e.g. seconds 25, 60,
140) when TFRC is used, thus causing video to freeze at
the client, while for UTFRC this situation does not happen.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 50 100 150 200

B
u
ff

e
r

s
iz

e
 (

b
y
te

s
)

Time (seconds)

TFRC
UTFRC

Figure 4. Buffer evolution for TFRC and UTFRC
throughput

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200

B
it
ra

te
 (

b
y
te

s
)

Time (seconds)

1-second bitrate

Figure 5. The bitrate of the stream

7. Conclusions and Future Work

We have presented in this paper the concept of Utility-
driven TFRC and discussed its usefulness for multimedia
streaming applications. We have presented also two variants
of Utility-driven TFRC, a simple one and an advanced one,
that can improve the quality of service for streaming applica-
tions. Initial simulations show that UTFRC can improve the
perceived quality of multimedia streams, but further tests in
real streaming frameworks with both versions of UTFRC are
necessary in order to fully assess their value or limitations.

References

[1] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-
Based Congestion Control for Unicast Applications, ACM
SIGCOMM 2000.

[2] S. Floyd, M. Handley, J. Padhye, J. Widmer, TCP Friendly
Rate Control, RFC 3448, January 2003.

[3] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling
TCP Throughput: A Simple Model and its Empirical Validation,
SIGCOMM Symposium on Communications Architectures and
Protocols, Aug. 1998.

[4] D. Bansal, H. Balakrishnan, Binomial Congestion Control
Algorithms, IEEE Infocom 2001.

[5] R. Rejaie, M. Handley, and D. Estrin, An End-to-end Rate-
based Congestion Control Mechanism for Realtime Streams in
the Internet, In Proceedings of INFOCOMM 99, 1999.

[6] D. Sisalem and H. Schulzrinne, The Loss-Delay Based Ad-
justment Algorithm: A TCP-Friendly Adaption Scheme, In
Proceedings of NOSSDAV98, 1998.

[7] I. Rhee, V. Ozdemir, and Y. Yi, TEAR: TCP Emulation at
Receivers Flow Control for Multimedia Streaming, April 2000.
NCSU Technical Report.

[8] D. Tan and A. Zakhor, Real-time Internet Video Using Error
Resilient Scalable Compression and TCP-friendly Transport
Protocol, IEEE Transactions on Multimedia, May 1999.

[9] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker, Dynamic
behavior of slowly-responsive congestion control algorithms,
In Proc. of ACM SIGCOMM01, San Diego, California, USA,
August 2001.

[10] Y. Richard Yang, M. Sik Kim, and Simon S. Lam, Transient
Behaviors of TCP-friendly Congestion Control Protocols, In
Proc. of IEEE Infocom2001, March 2001.

[11] S. Floyd, M. Handley and J. Padhye, A Comparison of
Equation-Based and AIMD Congestion Control, ACIRI, Febru-
ary 2000, http://www.aciri.org/tfrc/.

[12] I. Rhee, L. Xu, Limitations of Equation-based Congestion
Control, In Proc. of ACM SIGCOMM’05, Philadelphia, Penn-
sylvania, USA, August 2005.

[13] Z. Wang, S. Banerjee and S. Jamin, Media-Friendliness of A
Slowly-Responsive Congestion Control Protocol, In Proceed-
ings of NOSSDAV’04, 2004.

[14] J. Yan, K. Katrinis, M. May, B. Plattner, Media- and TCP-
Friendly Congestion Control for Scalable Video Streams, IEEE
Transactions on Multimedia, Vol. 8, No. 2, April, 2006.

[15] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, Rate control for
communication networks: Shadow prices, proportional fairness
and stability, J. Oper. Res. Soc., vol. 49, no. 3, pp. 237-252,
Mar. 1998.

[16] S. H. Low and D. E. Lapsley, Optimization flow control I:
Basic algorithm and convergence, IEEE/ACM Transactions on
Networking, vol. 7, pp. 861-874, Dec. 1999.

[17] K. Kar, S. Sarkar, and L. Tassiulas, A simple rate control
algorithm for maximizing total user utility, in Proc. IEEE
INFOCOM, Apr. 2001, pp. 133-141.

[18] R. Srikant, The Mathematics of Internet Congestion Control,
Cambridge, MA: Birkhauser, 2004.

[19] M. Vojnovic, J. Y. Le Boudec, On the long-run behavior
of equation-based rate control, IEEE/ACM Transactions on
Networking, Volume 13, Issue 3, pp.568 - 581, 2005.

[20] F. Pereira, T. Ebrahimi, The MPEG-4 Book, Prentice Hall
PTR, ISBN 0130616214, 9780130616210, 2002.

