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Abstract—This paper presents a dataset that can be used for
evaluating query suggestion algorithms in textual information
retrieval. The dataset is public and offered free of charge to
the information retrieval research community. The data was
gathered in an experiment that lasted more than 2 months and
to which participated a number of 119 users, mainly faculty
students. The dataset contains web browsing history and query
history (submitted to the Google search engine) from all these
users. The data is indexed in a database and downloadable
in a database dump format. The dataset is very useful for
evaluating general query suggestion algorithms by themselves (in
a standalone manner) or against Google’s MPC query suggestion
algorithm. At the same time, the dataset supports building and
testing personalized query suggestion algorithms that consider
the user context/profile when computing query suggestions.

Index Terms—dataset, query suggestion, information retrieval,
search engine

I. INTRODUCTION

Retrieving information from the web can be very difficult
for the user sometimes. This is because, depending on the
specific information need, users may not know what terms to
enter in the search input of a search engine to better describe
their information needs. In [1], [2] we can see that most of the
search queries are very short, one or two words on average and
in [3], [4] we can see that these words are ambiguous. In order
to help the user when performing a search, most search engines
like Google, Yahoo!, Bing and others, employ techniques like
query auto-completion and query suggestions. In almost all
search engines we can see how, after we start typing letters,
the system automatically tries to predict what we actually want
to type. This is called query auto-completion [5], where the
query prefix input by the user is matched against other possible
queries by the search engine and the search engine offers a
list of alternative queries to the user that he/she can use in
order to satisfy his/her information need. This auto-completion
is actually the highest ranked suggestion from a suggestions
list. The query suggestions list is a list that contains from
eight to ten words (or groups of words), which are usually
prefixed with the subquery that the user is typing, items that
are extracted from a huge log of queries submitted by all
users. A very well known technique of extracting suggestions
from a common query log is called Most Popular Completion
(MPC) [6]. Query suggestion and query auto-completion are

very similar. The main scope of both of them is to save user
keystrokes when performing a search. A query suggestion is
an enhanced, proposed query that the user might be looking
for, whereas an auto-completion is the possible query term that
the user might want to type immediately after he/she started
typing the first letter.

Query suggestions algorithms are very different than search
and retrieve algorithms, although they are both implemented
by the search engine. The search and retrieve algorithm gets
a query as input parameter and based on various TF (term
frequency) / IDF (inverse document frequency) formulas, it
retrieves from the inverted index, a list of documents, usually
10, most relevant to the input query [7]. On the other had,
query suggestions algorithms have as input a query prefix (i.e.
a subquery) and based on various forms of user logs (i.e. user
history collected by the search engine server or by the browser)
return a list of query suggestions that can be used by the user,
meaning the user can pick one of the query suggestions and
submit it to the search engine server where the search and
retrieve algorithm is run. Therefore, the execution of the query
suggestions algorithm precedes the execution of the search and
retrieve algorithm, in a search session. In the current paper we
deal only with query suggestions algorithms.

When evaluating algorithms for textual information re-
trieval, there are two possible choices for an evaluation dataset:
a) private datasets like the ones taken from Google or Bing
server logs which are not available to researches that do not
have a collaboration with those companies and b) datasets
produced by organizations like NIST which are available to
researchers at a cost within a conference (like the TREC
conferences). The datasets that are available free of charge
are very few and usually they are very small (e.g. datasets
provided by the Kaggle platform, see Section II). But to the
best of our knowledge, there are no datasets available, with
a fee or no fee, for evaluating query suggestions algorithms
for information retrieval. All the datasets that are available
are for evaluating the information retrieval algorithm itself
(i.e. the search and retrieve algorithm), not the algorithm that
provides query suggestions. The contribution of this paper is
a dataset useful for evaluating query suggestions algorithms
in information retrieval. The dataset contains data collected
over a period of more than 2 months in an experiment with



119 volunteers. It is provided free of charge to the research
community. The paper details the structure of the dataset, the
experiment run for collecting the data and ways this dataset
can be used.

The rest of this paper is organized as follows. Section II
presents other data collections available for the research com-
munity involved in the Information Retrieval field, discussing
the advantages and disadvantages. Section III presents our
data collecting methodology, also describing the architecture
of the browser plug-in developed for this, while section IV
contains a detailed view of how our dataset is organized.
In section V, we present several ways in which our dataset
can be used for evaluating a query suggestions algorithm in
information retrieval. The paper ends with conclusions and
acknowledgments.

II. RELATED WORK

There are some datasets available for the Web Information
Retrieval scientific community. Most of them contain crawled
documents, either indexed or just the raw documents pre-
processed, ready to be indexed. Some of them also contain
reference search topics and queries together with the ranking
of the documents in the dataset with respect to a particular
query (ranking performed manually by human operators).
Some rather old datasets are the Reuters dataset [8] from
2000-2005 and the AOL dataset [9] from 2006. The Reuters
dataset comes in 2 volumes, RCV1 and RCV2, and contains
news stories from Reuters, a text and television news agency.
Each story/document is manually assigned to a category.
RCV1 contains approximately 810,000 documents and RCV2
contains over 487,000 documents. The AOL dataset consists
of approximately 17 millions queries submitted by 657,426
unique users to the AOL search engine.

The most well known datasets for testing textual retrieval
algorithms are the ones provided for TREC tracks [10]. There
are many datasets available there, many of them being used
for domain-specific search (like medical search, legal search
etc.), but there are also datasets for testing general textual
retrieval algorithms. In order to get access to these datasets,
a fee is usually required. Some of the most used ones are the
ClueWeb09 and ClueWeb12 datasets. The ClueWeb09 dataset
[11] is available from 2009 and contains 1,040,809,705 web
pages, in 10 languages, but there is also a simplified, TREC-
B sample collection of this data containing approximately
50 million web pages. The ClueWeb12 dataset [12] is more
recent, from 2012, containing 733,019,372 English web pages
and there is also a TREC-B version of this dataset containing
only 50 million documents. Both ClueWeb datasets do not
contain topics, queries and reference ranking/judgments for
these queries, but the TREC conference provides each year
a list of search topics and queries together with a reference
ranking of documents for these queries.

There are also free datasets available from the Kaggle plat-
form [13], but they are not very specific for textual information
retrieval tasks, nor they contain queries with judgments about
relevance of a document to a query.

The aforementioned datasets can be used, together with a
set of queries and accompanying document relevance judg-
ments (like the ones provided within TREC conferences),
for evaluating the efficiency of textual retrieval algorithms.
One would index all the data in the collection, run the given
set of queries through their own search engine and compare
the returned results against the reference document relevance
judgments accompanying the data collection. Our own dataset
differs from the previous ones because it is focused not
on general textual information retrieval algorithms, but on
query suggestion algorithms for textual information retrieval.
In addition, we provide it free of charge. One can use our
dataset in order to assess the efficiency of a query suggestion
algorithm for information retrieval against the standard MPC-
based (i.e. Most Popular Completion [6]) query suggestion
algorithm provided with the Google search engine. Although
our dataset focuses on personalized query suggestion algo-
rithms (algorithms that consider the previous user browsing
history or query history when computing query suggestions),
other types of query suggestion algorithms (e.g. MPC-based
ones) can be evaluated using our dataset. More usage details
are provided in Section V. To the best of our knowledge,
there is no such dataset publicly available for evaluating query
suggestion algorithms.

III. COLLECTING THE DATA. THE EXPERIMENT

This section describes the experiment we have run and the
tools we have developed in order to collect the data and build
the dataset.

We have collected the data using a Chrome extension that
we built. The reason why we have chosen a Chrome extension
is the fact that according to different stats counters like [14],
[15], Chrome has around 63% of the entire browser market
share worldwide. The name of the extension is User History
Collector and it can be installed from Chrome Web Store.
After installing this extension, it will scan and parse all the
web pages that the user visits, and sends the web page raw
data to a server where it is stored in a database. A very
important feature of this extension is the fact that it allows
the user to specify which web pages he/she doesn’t want to
be processed. This will allow the user to protect his/her own
privacy and not share personal and private data, like emails,
messages, bank accounts etc. Besides the browsing data that
the extension collects, it also collects all the queries that the
users submits to Google search engine, alongside with the sub-
queries and query suggestions that Google returns during the
search process. We have chosen to save only Google queries
because, according to different statistic tools [16], [17], [18],
the Google search engine has a world wide market share of
around 88%.

The entire extension was written in JavaScript and makes
REST requests to a server written in Java, which stores all the
data in a MySql database. Currently, the server is implemented
on a single machine using threads, but for future work we want
to make it distributed using MPI [19]. In Fig. 1 we can see



all the components of the extension and how the data flows
from one component to another.

_ xURL

Content Script Background ScriptSend event when page is loaded

HTTP request to save history data

Server

Configuration 
popup

Excluded pages configuration

Fig. 1: User History Collector components diagram

The background script is the main component of the ex-
tension because it is responsible with parsing the content of
visited web pages and making requests to the server in order
to save the data, and it also contains information about user’s
preferences, like the client UUID, which is generated once
when the user installs the extension, and all the web pages
that the user has chosen to be ignored (i.e. not indexed) by
the extension. The configuration popup is the user interface of
the extension, where the user can manage the list of the web
pages that are excluded from processing. The content script
is the component that is injected in each web page, and waits
for the page to load, checks whether the page is the Google
search engine page or if it is just a normal web page, and does
the following:

1) If the URL of the page does not start with
”www.google.”, it will interpret it as a new web page
that was viewed and will extract the actual text from
the HTML document and, alongside with page URL
and page title, it will pass it to the background script.
The background script will split the text in terms,
will eliminate stop words and will calculate the term
frequency for each unique word. After this step, it will
make an Ajax HTTP request to a server which will store
all the history data for later analysis.

2) If the URL of the page, does match ”www.google.”, it
means the user is trying to perform a Google search. In
this case:

a) For each key pressed in Google’s search input,
the content script will extract the value of the
search input and the list of suggestions provided by
Google for the written subquery. This information
is passed to the background script which will send
it to the server.

b) When the user finishes to type the desired query
and submits it to Google, that particular query is
passed to the background script which will send it
to the server.

After publishing the extension to Chrome Web Store, we
have asked a group of students to install the extension and

continue to use the Chrome browser as they would normally
do, so that we can collect data about the real user’s behavior
and perform offline analysis on it. We do not store any
kind of personal information of the user that installed the
extension and the user is at all time in control of his/her data
that gets indexed (i.e. through the mechanism of excluding
web sites from indexing, mechanism that is provided by the
Chrome extension). All students participating in our study
were volunteers. Once installed, the extension generates a
UUID, which will further be used to map all the collected
data to a particular user. We have started this experiment right
after we published the first version of the extension, on 1st
of April 2019 and had it on going for a period of 2 months.
During this period of time, there were 119 unique users that
had the extension installed and participated to the experiment.

IV. THE STRUCTURE OF THE DATASET

At the end of the 2-months experiment, the size of the
MySQL database dump file grew up to 4.25GB. Our dataset
is provided in the form of this MySQL database dump. The
structure of the dataset (i.e. the structure of the database) is
described and analyzed in the current section.

In Fig. 2 we can see the number of unique tokens from
the dataset, tokens belonging to the web pages that the users
have visited.

Total number of unique tokes Total database dump file size

4770003 4.25 GB

Fig. 2: The dataset’s database size

(a) Query related tables diagram

(b) Page history tables diagram

Fig. 3: Tables diagrams of our dataset’s database

The table diagrams of the database are presented in Fig. 3a
and Fig. 3b. First, in Fig. 3a we can see that queries made
by users are stored in the query table, sub-queries (i.e. prefix



Time period Total number of 
users

Total number of 
queries

Total number of 
collected web 
pages

Total number of 
sub-queries

Total number of 
query 
suggestions

2 months 119 54395 366417 15175 101499

Fig. 4: Dataset Dimensions

of a query or a partial query) are stored in the subquery table
and query suggestions provided by the Google search engine
are stored in the suggestion table. In Fig. 3b we can see the
tables containing the web page history index. These two tables
contain data about the web pages that the user had visited. For
all this data, queries, sub-queries and visited pages, the exact
date and time when that data was collected is stored in the
database. This information is stored as a timestamp in the
createdAt column which can be found in almost all the tables.

In Fig. 4 we present some dimensions of our dataset,
which includes the total number of users that had the extension
installed, the total number of queries that users submitted to
Google search engine, the total number of sub-queries and
query suggestions that Google offered at that time, and also
the total number of web pages that users have visited during
the 2 months period when we conducted the experiment.

Min number pages per user 178

Max number of pages per user 11042

Average number of pages per user 3079.13

Standard pages deviation 2333.30

Fig. 5: Average Visited Pages per User

Min number queries per user 18

Max number of queries per user 1799

Average number of queries per user 457.10

Standard query deviation 394.48

Fig. 6: Average Queries per User

Fig. 5 contains information from the dataset about web
pages that were visited by the users of the extension. For
example, the maximum number of pages that were visited by
a single user in the 2 moths period of time, was 11042 web
pages, whereas, the minimum number of web pages visited
by a user, was 178. We have also computed the standard
deviation for all the web pages per user, which is 2333.30.
Fig. 6 contains the same type of statistics, but for the queries
that the users used on Google search. We can observe that the
minimum number of queries that were used by a particular
user was 18 and the maximum number of queries was 1799
and the standard deviation is 394,38. The high deviations for
both visited web pages and queries tells us the fact that the
data in our dataset is very diverse.

It is commonly accepted that search queries can be divided
into two main types: navigational queries and informational

12088 (22.2%)

42307 (77.8%)

General queries
77.8%

Navigational Queries
22.2%

Fig. 7: Navigation and General Queries

queries. A navigational query is a search query entered by the
user with the intent of finding a very particular web page. For
example, a user might type ”twitter” into Google’s search input
in order to find and navigate to the Twitter website, instead
of directly typing the full address in the address bar. We can
say that whenever a user submits a query to Google, and the
URL of the first page that he navigates to contains all the
terms from the query, the query is a navigational query. An
informational query is a search query that can cover a very
large topic, for which, the search engine can return a very large
number of relevant information (the website this information
comes from is not important by itself). When a user submits
such a query to Google, he is looking for some information
and not a particular website. In Fig. 7, which is built from
the data present in our dataset, we can see that 77.8% of the
queries are informational queries and 22.2% are navigational
queries. We considered a query to be a navigational query if
the URL of the first page, that is visited by the user, contains
all query terms; all other queries that do not follow this rule
are considered as information queries.

30/05/2019 Word Art

1/1

Fig. 8: Queries WordArt

In Fig. 8 we present a word art picture created on
www.wordart.com, a word art that was built using query tokens
from all the queries used by all the users of the Chrome
extension. Given the fact that all the users are computer
science students, what we can observe that this word art
contains a lot of domain specific tokens like ”java”, ”php”,



”server”, ”web”, ”html”, ”class”, ”mysql”, ”spring” etc..
An interactive version of this word art can be found at [20].

V. USING THE DATASET

As seen in Fig. 3a and Fig. 3b, our dataset comes in the
form of a relational database. The browsing history of users
and the query history of users is stored in the database tables
depicted in these two figures. The raw data is already indexed
in the database. We can recreate query sessions of a user from
the tables in Fig. 3a, using the createdAt field. By query
session we refer to all the query data generated by a user
from the moment he/she typed the first letter from a query in
the search input box to the moment he/she types or chooses
the final query that is submitted to the search engine. This
includes the subqueries (i.e. query prefixes) sent by the user to
the search engine together with the lists of query suggestions
provided by the search engine for each subquery and also
includes the final query chosen by the user and submitted to
the search engine. A query session takes place in the following
way: as the user starts typing characters in the search input
of the search engine, the search engine returns a list of query
suggestions, Qs(i), i = 1..10, ordered by their relevancy to the
user’s information need (relevancy is computed by the search
engine using a Most Popular Completion technique, Qs(1)
being the most relevant suggestion according to the search
engine). The user might continue typing characters and ignore
the suggestions offered (i.e. sending additional subqueries to
the search engine) or he/she may choose a suggestion to be the
final query. In the end, he/she either chooses the final query
Q from the list of suggestions provided by Google or he/she
writes the final query Q completely (i.e. Q does not appear
in the query suggestions list) and submits it to the server.
In a query session we can define several query contexts, i.e.
(SQ,Qs(1), ..., Qs(10)) tuples that are made of the subquery
SQ (i.e. the string typed by the user in the search input)
together with 10 suggestions offered by the search engine for
the subquery SQ.

The dataset could be used for evaluating a query suggestions
algorithm in a couple of different ways.

Usage 1. The query component of the dataset (i.e. tables
from Fig. 3a) can be used for evaluating the output of a query
suggestions algorithm. Because a user query session from the
database contains the subqueries (i.e. query prefixes) typed by
the user and also the final query Q submitted by the user to the
search engine, one can evaluate if a query suggestion algorithm
is able to suggest the final query Q when the user submits only
a small query prefix (i.e. one or two letters of the query). For
example it can check whether the customized query sugges-
tions algorithm suggests the final query Q before the Google
suggestions algorithm does. Another evaluation can be the one
where a customized query suggestions algorithm reorders the
query suggestions offered by Google for a subquery SQ so
that it moves more relevant query suggestions to top positions
in the query suggestions list. The efficiency/utility of such
query suggestions reordering can then be evaluated using the
MRR (Mean Reciprocal Rank) [6] or SR@k (Success Rate at

top-k) [21] metrics. Such an evaluation using a similar, albeit
smaller, dataset as the one presented in the current paper is
demonstrated in [22].

Usage 2. The web pages component of the dataset (i.e.
tables from Fig. 3b) can be used for building a personalized
query suggestions algorithm like the one demonstrated in [22].
The user’s recent web browsing history can be used by the
query suggestion algorithm to render more personalized query
suggestions or to reorder the query suggestions list provided
by the search engine (i.e. Google for our dataset) so that more
relevant query suggestions are moved to the front positions
in the list. In addition the user’s query history (contained in
the tables from Fig. 3a) can also be used for personalizing
the query suggestion list. Or the whole database (containing
web pages history and query history of all users) can be used
in order to generate domain-specific MPC-based (i.e. Most
Popular Completion) query suggestions.

VI. CONCLUSIONS

We presented in this paper a dataset that can be used for
testing query suggestion algorithms in the field of information
retrieval. We presented the data collecting methodology, the
data structure and several ways it can be used in order to
evaluate a query suggestion algorithm for information retrieval.
We build this dataset by collecting the web browsing history
and query history from 119 volunteers in an experiment that
lasted over 2 months. We think that the dataset is very useful
for evaluating all sorts of query suggestion algorithms: from
MPC-based ones to personalized ones based on the user’s
private web browsing history or on the user’s query history
(i.e. the queries previously submitted by this user to the search
engine).

The dataset is offered free of charge at the following URL:
http://www.cs.ubbcluj.ro/˜ionutb/history-collector/dataset
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