GRADUATION EXAM Written Test - September 2025 Mathematics Computer Science Study Programme

SUBJECT I. Algebra

- 1. (4 points) Let us consider the set $GL_2(\mathbb{Z}_2) = \{A \in M_2(\mathbb{Z}_2) | \det A \neq \hat{0}\}.$
 - a) Show that $GL_2(\mathbb{Z}_2)$ is closed in $M_2(\mathbb{Z}_2)$ with respect to the matrix multiplication and $GL_2(\mathbb{Z}_2)$ and the induced operation form a group.
 - b) How many elements does $GL_2(\mathbb{Z}_2)$ have? Motivate your answer.
 - c) Does the group $(GL_2(\mathbb{Z}_2), \cdot)$ have 2-element subgroups? Motivate your answer.
- 2. (5 points) Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear map from \mathbb{R}^3 into \mathbb{R}^2 such that

$$f(1,1,1) = (1,-1), f(1,1,0) = (1,1)$$
 și $f(1,0,0) = (0,1).$

- a) Show that the vectors (1,1,1), (1,1,0), (1,0,0) form a basis B of the vector space \mathbb{R}^3 and write the matrix of f in the pair of bases (B,E) (where E is the standard basis of the vector space \mathbb{R}^2).
- b) Determine f(x, y, z) (where $(x, y, z) \in \mathbb{R}^3$).
- c) Determine the dimension of the kernel of f and the dimension of the image of f (considered as \mathbb{R} -vector spaces).

SUBIECTUL II. Calculus

1. (3 points) Study with discussion on the real parameters α and β the nature of the series of real numbers

$$\sum_{n>1} \frac{(1\cdot 5\cdot \ldots \cdot (4n-3))^{\alpha}}{(3\cdot 7\cdot \ldots \cdot (4n-1))^{\beta}}.$$

2. (3 points) Determine Taylor's polynomial of random rank n, attached to the function f about the point a = 0 for $f : \mathbb{R} \setminus \{-2, -1\} \to \mathbb{R}$, when

$$f(x) = \frac{x+4}{x^2+3x+2}, \quad \forall x \in \mathbb{R} \setminus \{-2, -1\}.$$

3. (3 points) Determine

$$\int \frac{\sin x}{3 + \cos x + \cos^2 x} dx.$$

SUBJECT III. Geometry

- 1. (5 points) The point A(3,-2) is a vertex of the square ABCD, whose diagonals intersect in the point M(1,1).
 - a) Write the equation of the line AM and determine the coordinates of the vertex C.
 - b) Find the equation of the line BM.
 - c) Write the equation of the circumscribed circle of the square and determine the coordinates of the other vertices of the square.
- 2. (4 points) The axis of symmetry of a parabola lies on the Ox axis, and its vertex is at the origin.
 - a) Determine the equation of the parabola, given that it passes through the point A(2,4).
 - b) Write the equation of the tangent line to the parabola that is parallel to the line y = 2x.

SUBJECT IV. Computer Science

Note for the Computer Science subject:

One of the following programming languages C++, Python, Java or C# can be used to solve problems 1 and 2. Indicate the programming language used.

Existing libraries (from Python, C++, Java, C#) can be used in the provided solutions.

- 1. (2p) Write a program that:
 - a) Implements a class *Person* with the following protected attributes:
 - **name** of type string,
 - age of type integer.

Add to the class:

- a *constructor* with parameters,
- get/set methods for all attributes,
- toString method that returns a string containing the name and the age of the person separated by space.
- b) Derive the class Student from class Person having all attributes of class Person and add a new attribute faculty of type string. Write the methods get/set for the new attribute. The method toString from class Student will return the content of the method toString from class Person followed by a space and the faculty attribute.
- 2. **(2p)** Create a vector containing two objects of type **Person** and one object of type **Student**. Write a function that receives as parameter the previously created vector and returns the average age of the persons in the vector.
- (2p) Fill in the missing statements from the following function to determine the objects of type Student from the vector stud attending the faculty specificFaculty. You can use the function push_back which inserts an element at the end of the vector.

```
vector<Student> filter (const vector<Student>& stud, const string& specificFaculty){
   vector<Student> rez;
   ...
   return rez;}
```

4. **(2p)** Write the result of running the following sequence of code. The function *push_back* inserts an element at the end of the vector, the function *pop_back* removes the last element from the vector, and the function *back* returns a reference to the last element of the vector.

```
vector<Person> v;
v.push_back(Person("Alexandru", 23));
v.push_back(Student ("Tudor", 19, "History"));
v.push_back(Person("Ana", 19));
v.push_back(Student("Maria", 20, "Chemistry"));
v.pop_back();
v.pop_back();
cout<<v.back().toString()<<endl;</pre>
```

5. **(1p)** Explain the concept of dynamic linking.

NOTE.

All subjects are compulsory and full solutions are requested.

An initial score of **1 point** is awarded to each subject. The minimum passing grade is 5,00. The working time is 3 hours.

GRADUATION EXAM

Written Test - September 2025 Mathematics Computer Science Study Programme Grading scheme

_	SUBJECT I. Algebra Default
1. a)	For $A, B \in GL_2(\mathbb{Z}_2)$ we have $\det A \neq \hat{0}$ and $\det B \neq \hat{0}$. By using the fact that \mathbb{Z}_2 is a field, and consequently a ring without zero divisors, we have $\det(AB) = \det A \det B \neq \hat{0}$, that is, $AB \in GL_2(\mathbb{Z}_2)$
b)	$ \begin{cases} \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix}, \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}, \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{1} \end{pmatrix}, \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{1} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix} \right\}, $ hence $ GL_2(\mathbb{Z}_2) = 16 - 10 = 6 \dots 1p$
	Alternatively, we may directly look for matrices in $M_2(\mathbb{Z}_2)$ having determinant $\hat{1}$ and we get $GL_2(\mathbb{Z}_2) = \left\{ \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix}, \begin{pmatrix} \hat{1} & \hat{1} \\ \hat{0} & \hat{1} \end{pmatrix}, \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{1} \end{pmatrix} \right\}$, hence $ GL_2(\mathbb{Z}_2) = 6$.
c)	$H = \left\{ \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}, \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix} \right\} \text{ is a subgroup with 2 elements of the group } GL_2(\mathbb{Z}_2), \text{ because } \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix}^2 = I_2,$ hence we have closure, $I_2 \in H$ and $\begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix}^{-1} = \begin{pmatrix} \hat{0} & \hat{1} \\ \hat{1} & \hat{0} \end{pmatrix} \in H$
2. a)	The transition matrix from the standard basis from \mathbb{R}^3 to the system of vectors B is $T = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$,
	which is invertible, because $\det T = -1 \neq 0$. Hence B is a basis of \mathbb{R}^3
b)	We determine the coordinates $x', y', z' \in \mathbb{R}$ of (x, y, z) in the basis B :
	$(x,y,z) = x'(1,1,1) + y'(1,1,0) + z'(1,0,0) \Leftrightarrow \begin{cases} x' + y' + z' = x \\ x' + y' = y \\ x' = z \end{cases}$
	The solution of the system is $x' = z, y' = y - z, z' = x - y$
	The solution of the system is $x' = z, y' = y - z, z' = x - y$
	$\begin{pmatrix} z \\ y-z \\ x-y \end{pmatrix}$.)
	Now, by using the linearity of f , we have $f(x, y, z) = f(x'(1, 1, 1) + y'(1, 1, 0) + z'(1, 0, 0)) = x'f(1, 1, 1) + y'f(1, 1, 0) + z'f(1, 0, 0) = z(1, -1) + (y - z)(1, 1) + (x - y)(0, 1) = (y, x - 2z) \dots 1p$

Alternatively for the whole subpoint b), E' being the canonical basis of \mathbb{R}^3 , we have

$$[f]_{E',E} = [f]_{B,E}T^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -2 \end{pmatrix},$$

hence
$$f(x, y, z)^t = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ x - 2z \end{pmatrix}$$
.

NOTE: Any other correct solution will be scored accordingly.

GRADUATION EXAM

Written Test - September 2025 Mathematics Computer Science Study Programme Grading scheme

Grading scheme
SUBJECT II. Calculus
Default
1. One can use the Raabe-Duhamel criterion: Let $\sum_{n\geq 1} a_n$ be a series with positive terms. If
$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lambda,$
then: 1) pentru $\lambda > 1$ is convergent; 2) for $\lambda < 1$ the series is divergent.
We denote $a_n = \frac{(1 \cdot 5 \cdot \ldots \cdot (4n-3))^{\alpha}}{(3 \cdot 7 \cdot \ldots \cdot (4n-1))^{\beta}}, n = 1, 2, 3, \ldots$
Then
$\lambda = \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{(4n+3)^{\beta}}{(4n+1)^{\alpha}} - 1 \right) =$
$= \lim_{n \to \infty} n \left(n^{\beta - \alpha} \frac{\left(4 + \frac{3}{n}\right)^{\beta}}{\left(4 + \frac{1}{n}\right)^{\alpha}} - 1 \right) = \begin{cases} +\infty, & \text{if } \beta > \alpha \\ -\infty, & \text{if } \beta < \alpha. \end{cases}$
Thus $\sum_{n\geq 1} a_n$ is convergent, if $\alpha < \beta$, and $\sum_{n\geq 1} a_n$ is divergent, if $\alpha > \beta$.
For the case $\alpha = \beta$: by using L'Hopitals rule
$\lambda = \lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{(4n+3)^{\alpha}}{(4n+1)^{\alpha}} - 1 \right) = \lim_{n \to \infty} \frac{\left(\frac{4+\frac{3}{n}}{4+\frac{1}{n}} \right)^{\alpha} - 1}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\left(\frac{4+3x}{4+\frac{1}{n}} \right)^{\alpha} - 1}{x} = \lim_{n \to \infty} \alpha \left(\frac{4+3x}{4+x} \right)^{\alpha-1} \cdot \frac{8}{(4+x)^2} = \frac{8\alpha}{16} = \frac{\alpha}{2}.$
$x \searrow 0$ $x \longrightarrow x \searrow 0$ $(4+x)$ $(4+x)^2$ $(4+x)^2$
Therefore, from Raabe-Duhamel: $\sum_{n\geq 1} a_n$ is convergent if $\alpha=\beta>2$, and $\sum_{n\geq 1} a_n$ is divergent if $\alpha=\beta<2$.
If $\alpha = \beta = 2$, then $\frac{a_{n+1}}{a_n} = \left(\frac{4n+1}{4n+3}\right)^2 > \frac{n}{n+1},$
for each $n \ge 1$. Thus the sequence $(na_n)_{n\ge 1}$ is increasing, therefore $na_n \ge a_1$, for each $n \ge 1$, meaning $a_n \ge \frac{1}{9n}$, for each $n \ge 1$.

Since the harmonic series is divergent $\sum_{n\geq 1}\frac{1}{n}$ we get that $\sum_{n\geq 1}a_n$ is also divergent.

2. Taylor's polynomial of random rank n attached to the function f about the point a=0 is the function

$$T_{n;0}f:\mathbb{R}\to\mathbb{R}$$

with

$$T_{n;0}f(x) = \sum_{k=0}^{n} \frac{f^{k}(0)}{k!} x^{k}, \quad \forall x \in \mathbb{R}$$

0.25

The function f is indefinite differentiable on $R\setminus\{-2,-1\}$ as a composition of elementary functions. 0.25p By considering a random $x\in\mathbb{R}\setminus\{-2,-1\}$ and splitting the initial fraction into simple fractions we get

$$\frac{x+1}{x^2+3x+2} = \frac{A}{x+2} + \frac{B}{x+1} = \frac{3}{x+1} - \frac{2}{x+2}.$$

0.25₁

For a random constant b, we determine by mathematical induction for a random $n \in \mathbb{N}$ the n-th derivative of

$$g: \mathbb{R}\backslash\{b\} \to \mathbb{R}$$
 cu $g(x) = \frac{1}{x+b} = (x+b)^{-1}$.

Thus

$$g'(x) = (-1)(x+b)^{-2}, \quad g''(x) = (-1)(-2)(x+b)^{-3} \quad \dots \quad g^{(n)}(x) = (-1)(-2)\dots(-n)(x+b)^{-(n+1)},$$

$$g^{(n)} = (-1)^n n! (x+b)^{-(n+1)}.$$

By applying the result above to f, we get

$$f^{(n)}(x) = 3(-1)^n n!(x+1)^{-(n+1)} - 2 \cdot (-1)^n n!(x+2)^{-(n+1)} = (-1)^n n! \cdot \left(\frac{3}{(x+1)^{n+1}} - \frac{2}{(x+2)^{n+1}}\right)$$

Therefore

$$f^{(n)}(0) = (-1)^n n! \cdot \left(\frac{3}{(0+1)^{n+1}} - \frac{2}{(0+2)^{n+1}}\right) = (-1)^n n! \cdot \left(3 - 2^{-n}\right)$$

......1p

Consequently

$$T_{n;0}f(x) = \sum_{k=0}^{n} \frac{(-1)^{k} k! \cdot (3 - 2^{-k})}{k!} x^{k} = \sum_{k=0}^{n} (-1)^{k} \cdot (3 - 2^{-k}) x^{k} = \sum_{k=0}^{n} (3 - 2^{-k}) (-x)^{k}.$$

$$0.51$$

3. We use the following change of variable $\cos x = t$, then

$$-\sin x dx = dt$$

......1p

We get

$$I = \int \frac{\sin x}{3 + \cos x + \cos^2 x} dx = -\int \frac{dt}{3 + t + t^2}$$

.....1p

Consequently

$$I = \int \frac{-dt}{\left(t + \frac{1}{2}\right)^2 + \frac{11}{4}} = -\frac{2}{\sqrt{11}} \arctan \frac{2\left(t + \frac{1}{2}\right)}{\sqrt{11}} + \mathcal{C} = -\frac{2}{\sqrt{11}} \arctan \frac{2t + 1}{\sqrt{11}} + \mathcal{C} =$$
$$= -\frac{2}{\sqrt{11}} \arctan \frac{2\cos x + 1}{\sqrt{11}} + \mathcal{C}.$$

......1p

GRADUATION EXAM

Written Test - September 2025 Mathematics Computer Science Study Programme Grading scheme

SUBJECT III. Geometry

Default	р			
1. a) The equation is $AM: 3x + 2y - 5 = 0$	p p			
$C: (x-1)^2 + (y-1)^2 = 13.$				
The points B and D are at the intersection of the line BM with the circle C . Solving the system determined by the equations of the line and circle, we find that the vertices B and have coordinates $(4,3)$ and $(-2,-1)$, in some order	D			
2. a) The equation of the parabola is of the form $\mathcal{P}: y^2 = 2px$	p 5p ⇒ p			

NOTE: Any other correct solution will be scored accordingly.

BABEŞ-BOLYAI UNIVERSITY CLUJ-NAPOCA FACULTY OF MATHEMATICS AND INFORMATICS

Grading scheme for Computer Science Subject Exam session 1: Assessment of basic and specialist knowledge, license exam September 2025 Specialization Mathematics Computer Science

Computer Science Subject

a) Definition of class Person (constructor, methods, access to data)	2p 1 p 1 p
Creating the vector	2p 1p 1p
3. Iterating the elements Comparing elements Updating the result	2p 0.5p 1p 0.5p
4. Correct indication of the result that will be displayed	2p 2p
5. Theoretical explanation	1p 1p

Remark: (1p) Default