
BABEȘ-BOLYAI UNIVERSITY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Bachelor Degree Written Exam

Computer Science – English

VARIANT 1

REMARKS
● All subjects are compulsory and full solutions are requested.

● The minimum passing grade is 5.00.

● The working time is 3 hours.

SUBJECT Algorithms and Programming

• The programming language that is used must be indicated.

• The implementations are not required to deallocate dynamically allocated memory areas.

• Lack of appropriate programming style (suggestive variable names, indentation of code,

comments, if necessary, readability of code) will result in a 10% deduction from the

subject’s score.

• Do not add additional attributes or methods, other than those mentioned in the statement,

except for constructors and destructors, if applicable. Do not change the visibility of

attributes specified in the statement.

• Do not use sorted containers, predefined sort or search operations.

• Existing libraries (from C++, Java, C#, Python) may be used for data types.

An arithmetic expression can be represented as a binary tree as follows. If the expression

consists of a single operand, the associated binary tree has a single node (the root node), which contains

the respective operand as data. If the expression is of the form E1 op E2, where op is a binary operator

and E1 and E2 are arithmetic expressions, it is associated with a binary tree whose root node is labeled

with the operator op, the left subtree is the binary tree associated with the expression E1, and the right

subtree is the binary tree associated with the expression E2.

By traversing the binary tree associated with an arithmetic expression in postorder, its postfixed

form is obtained. For example, for the expression (1+3/2)-4*5

• the associated binary tree is

• the postfix form is '132/+45*-'.

1. (3.5 points) Write a function in one of the programming languages Python, C++, Java or C#, which

receives as a parameter a string s having at most 100 characters, representing the correct postfix form of

an arithmetic expression containing the binary operators '+' (addition), '-' (subtraction), '*' (multiplication),

'/' (division), and as operands non-zero single-digit natural numbers. The function will return the value of

the arithmetic expression. The algorithm must have time complexity θ(n), where n is the length of the

string s. Solutions that do not meet the required complexity will be awarded partial score. Example: for

the string '132/+45*-' the value -17.5 will be returned. Auxiliary functions may be implemented.

2. (1 point) Indicate the best-case, average-case, and worst-case time complexity for the function from item

1. Justify your answer.

3. (4.5 points) Consider the following UML diagram, which contains the classes ExpressionTree (represents

the binary tree associated with a correct arithmetic expression), Token, BinaryOperator, Constant and

Homework.

− The class ExpressionTree represents the binary tree associated with an arithmetic expression

whose operands are constants (non-zero natural numbers) and the operators are binary (+, -, *, /).

o The constructor of the class ExpressionTree takes as a parameter a non-empty string s

representing a correct arithmetic expression containing parentheses, binary operators, and

constants as operands, and constructs the binary tree associated with it. Implementation of

this constructor is not required.

o The isLeaf() method returns true if the tree consists of a single node (it is associated with

an arithmetic expression containing a single operand) and false otherwise.

o The getToken() method returns the data stored in the root of the binary tree A associated

with a non-empty expression, and the getLeft() and getRight() methods return the left

subtree and the right subtree of tree A, respectively.

− The abstract class Token represents the data (binary operator or constant operand) that can be

stored in a node of the tree. The class has an abstract method toString() that returns a string

associated with the token: if the token is a binary operator, the character representing the operator

is returned (e.g. '+'); if the token is a constant, the value of the constant converted into a string is

returned (e.g. '123').

− The class Homework stores a list expressions of arithmetic expressions received as homework by

a student. The addExpression(s: String) method in class Homework receives as parameter a

string s representing a correct arithmetic expression and adds the binary tree constructed from s to

the end of the list expressions. The getExpressions() method returns the list of binary trees

associated with the arithmetic expressions received as homework.

Write a program that implements the following requirements, using one of the C++, Java, or C#

programming languages:

a) Declare all classes, attributes, and methods as per the diagram above. Implement only the following

methods:

a1) Constructor of the BinaryOperator class. The operator attribute must represent a binary

arithmetic operator (+, -, *, /). The constructor must enforce this constraint.

a2) The method isLeaf() in class ExpressionTree.

a3) The method addExpression(s: String) in class Homework.

b) Define a function that receives as parameter an object e of type ExpressionTree and returns the string

representing the postfix form of the arithmetic expression associated with the tree stored in e.

c) Create an object h of type Homework in which the following arithmetic expressions to be evaluated

are added: '(5-3)+(2*6)', '5-(3*4+5)/(6-2)' and '3*(5/(3+2)-4)+6'. For each arithmetic expression stored

in h, display its postfix form, using the function from b).

SUBJECT Databases VARIANT 1

Problem 1. (4 points)

A towel manufacturing company stores information about customers, towels, and customer reviews related

to towels in a relational database:

• A customer has an ID, a name, an email address (unique for each customer) and date of birth.

• A towel has an ID, a name, a description, a model, length and width.

• A material has an ID, a name, and a description. A material can be used to make multiple towels, and

a towel can be made from multiple materials. Each material can be associated with each towel at most

once. For each pair of towel and material (for example, the pair made of towel p1 and material m1),

the percentage value of the material in the towel composition will also be stored.

• A customer can rate multiple towels, and a towel can receive ratings from multiple customers. Each

customer can rate each towel at most once.

Create a relational BCNF schema for the database, rigorously highlighting the primary keys, candidate keys,

and foreign keys. Create the schema in one of the ways indicated in the example below:

* example for tables Students, Courses, and Exams:

V1. Diagram with tables, primary keys underlined with a solid line, candidate keys underlined with a dashed

line, relationships drawn directly between foreign keys and the corresponding primary / candidate keys (for

instance, the relationship drawn between column IDS in Exams and column IDS in Students).

Students Exams Courses

IDS

CNP

LastName

FirstName

 IDS

IDC

Grade

 IDC

Name

Credits

V2.

Students[IDS, CNP, LastName, FirstName]

Courses[IDC, Name, Credits]

Exams[IDS, IDC, Grade]

Primary keys are underlined with a solid line, and candidate keys are underlined with a dashed line.

{IDS} in Exams is a foreign key referencing {IDS} in Students. {IDC} in Exams is a foreign key referencing

{IDC} in Courses.

Problem 2. (5 points)

Consider the following relations from a database about a company that offers board games for rent:

Categories(CategoryID, Name)

BoardGames(BoardGameID, Name, CategoryID, ReleaseYear, MinNoOfPlayers,

MaxNoOfPlayers, PricePerDay)

Persons(PersonID, Name, PhoneNumber)

Rentals(RentalID, BoardGameID, PersonID, RentalDate, NoOfDays, PaymentAmount)

Primary keys are underlined. Foreign keys are written in italics and have the same name as the columns they

reference.

a. Write an SQL query that returns the ID and the name of board games that can be played individually (see

the MinNoOfPlayers attribute), were rented in 2024 at least once, and have a release year equal to the most

recent release year of all board games that meet the mentioned conditions (see the ReleaseYear attribute).

∞1 1∞

b. Consider the following instances for relations BoardGames, Categories, Persons and Rentals:

Persons:

PersonID Name PhoneNumber

1 P1 1111111111

2 P2 2222222222

3 P3 3333333333

Categories:

CategoryID Name

1 strategy game

2 family game

3 cooperation game

BoardGames:

BoardGameID Name CategoryID Release

Year

MinNoOf

Players

MaxNoOf

Players

PricePerDay

1 JS1 1 2020 3 6 15

2 JS2 2 2016 2 4 5

3 JS3 1 2020 2 5 12

4 JS4 3 2024 3 10 10

Rentals:

RentalID BoardGameID PersonID RentalDate NoOfDays PaymentAmount

1 1 1 15.05.2025 3 45

2 2 1 18.05.2025 5 25

3 3 2 10.05.2025 2 24

4 3 2 02.06.2025 3 36

5 1 3 25.05.2025 1 15

6 2 3 03.06.2025 4 20

7 3 3 10.06.2025 2 24

8 4 2 20.06.2025 3 30

b1. Write the result of evaluating the query below on the given instances. Provide only the values of the

tuple(s) and the names of the columns in the result without describing all the steps of evaluating the query.

SELECT P.PersonID, P.Name, MIN(PaymentAmount) MinSum

FROM Persons P

 INNER JOIN Rentals R ON P.PersonID = R.PersonID

 INNER JOIN BoardGames BG ON R.BoardGameID = BG.BoardGameID

 INNER JOIN Categories C ON BG.CategoryID = C.CategoryID

WHERE C.Name = 'strategy game'

GROUP BY P.PersonID, P.Name

HAVING COUNT(DISTINCT R.BoardGameID) =

 (SELECT COUNT(*)

 FROM BoardGames BG2

 INNER JOIN Categories C2 ON BG2.CategoryID = C2.CategoryID

 WHERE C2.Name = 'strategy game'

)

b2. Explain whether the following functional dependencies are satisfied or not by the data in the Rentals

instance:

• {RentalID} → {BoardGameID}

• {PersonID} → {RentalDate}.

VARIANT 1
SUBJECT Operating Systems

Problem 1 (5 points). Answer the following questions about the execution of the program below, assuming that all

necessary includes are present.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

int main() {

 int k;

 if(fork() < 0) {

 printf("abc\n");

 } else if(fork() == 0) {

 return 1;

 } else {

 return 2;

 }

 while((k = wait(NULL)) > 0) {

 printf("%d\n", k);

 }

 return 3;

}

a) Explain in detail the functioning of line 3.

b) Explain in detail the functioning of lines 10-12.

c) What will be displayed in the console if both fork calls

fail? Justify your answer.

d) What will be displayed in the console if both fork calls

execute successfully? Justify your answer.

e) What will the initial process display in the console if line

8 is removed and both fork calls execute successfully?

Justify your answer.

Problem 2 (4 points). Answer the following questions about the execution of the ./a.sh script below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#!/bin/bash

N=$1

D=$2

shift 2

for A in $*; do

 if [$N -gt 0]; then

 mkdir -p $D/$A

 $0 `expr $N - 1` $D/$A $*

 else

 echo abc > $D/$A

 fi

done

a) Explain in detail the functioning of line 10.

b) What values will variable A take when executing the

command below?
 ./a.sh 1 a b c d

c) Considering that directory x does not exist initially, what

will be displayed in the console after executing the

commands below?
 ./a.sh 1 x a b
 find x -type f | sort

d) Considering that directory y does not exist initially, what

will be displayed in the console after executing the

commands below?
 ./a.sh 2 y a b

 cat `find y -type f` | wc -l

BAREM INFORMATICĂ

VARIANTA 1

Subiect Algoritmică şi Programare

Oficiu – 1p

Cerința 1. – 3.5p

- signatura – 0.2p

- implementare având complexitate timp θ(n) – 3.2p

* soluție având complexitate timp O(n2) – 2p

- returnare rezultat – 0.1p

Cerința 2. – 1p

- caz favorabil 0.4p din care

complexitate – 0.2

justificare – 0.2

- caz mediu 0.4p din care

complexitate – 0.2

justificare – 0.2

- caz defavorabil 0.2p din care

complexitate – 0.1

justificare – 0.1

Cerința 3.a) – 2.25p

Definirea clasei Token – 0.2p din care

 clasă abstractă – 0.1

 metoda toString – 0.1

Definirea clasei BinaryOperator– 0.65p din care

 relația de moștenire – 0.15

 atribut – 0.1

 constructor (a1) – 0.3

 metoda toString – 0.1

Definirea clasei Constant– 0.45p din care

 relația de moștenire – 0.15

 atribut – 0.1

 constructor – 0.1

 metoda toString – 0.1

Definirea clasei ExpressionTree – 0.55p din care

 atribute– 0.1

 constructor – 0.1

 metode getToken, getLeft, getRight – 0.15

 metoda isLeaf (a2) – 0.2

Definirea clasei Homework – 0.4p din care

 atribut – 0.1

 metoda getExpressions – 0.1p

 metoda addExpression (a3) – 0.2p

Funcția 3.b) – 1.75p

- signatura – 0.1p

- implementare parcurgere postordine – 1.55p

- returnare rezultat – 0.1p

Funcția principală 3.c) – 0.5p

- construire obiect h – 0.05p

- adăugare expresii aritmetice în h - 0.25p

- parcurgere listă expresii memorate în h și afișare formă postfixată – 0.2p din care

 apel funcție b) pentru expresie– 0.1p

 afișare formă postfixată expresie - 0.1 p

BAREM INFORMATICĂ

VARIANTA 1

Subiect Baze de date
Oficiu – 1p

Problema 1. Punctaj - 4p

● relații cu atribute corecte, chei primare, chei candidat: 3p

● legături modelate corect (chei externe): 1p

Problema 2. Punctaj - 5p

● a - rezolvarea completă a interogării: 2.5p

● b1 - rezultat evaluare interogare:

CodPersoana Nume MinSum

3 P3 15

- coloane – 0.5p

- valori tuplu – 1p

● b2 - {CodInchiriere} → {CodJocDeSocietate} este satisfăcută – 0.25p; 0.25p explicație

- {CodPersoana} → {DataInchirierii} nu este satisfăcută – 0.25p; 0.25p explicație

Notă: La specializările Informatică engleză și Informatică maghiară se iau în considerare versiunile

traduse în limbile corespunzătoare.

VARIANTA 1
SUBIECT Sisteme de operare

Barem:

1p – oficiu

Problema 1 (5p)

1p – a) Se rulează fork şi dacă eşuează condiţia va fi adevărată. Dacă fork nu eşuează, se creează un proces
fiu şi condiţia va fi evaluată ca falsă şi de procesul părinte şi de procesul fiu.

1p – b) Câtă vreme wait returnează succes, se tipăreşte PID-ul procesului fiu care tocmai s-a încheiat.

1p – c) Se va afişa abc pentru că procesul îniţial va intra în primul if, dar nu va intra în while pentru că

 neavând procese fiu, wait va returna eroare.

1p – d) Nu se va afişa nimic, pentru că procesul iniţial şi primul proces fiu se încheie la linia 8, al doilea

 proces fiu şi procesul nepot se incheie la linia 6

1p – e) Afişează PID-urile celor două procese fiu pe care le creează la liniile 3 şi 5.

Problema 2 (4p)

1p – a) Scriptul Shell se relansează în execuţie, cu primul argument decrementat, al doilea argument directorul
tocmai creat şi restul argumentelor identice cu cele rămase după shift.
1p – b) Va lua valorile b, c şi d

1p – c) Se va afişa: x/a/a x/a/b x/b/a x/b/b

1p – d) Se va afişa cifra 8

	Subiect informatica engleza - septembrie.pdf (p.1-5)
	Barem informatica - septembrie.pdf (p.6-8)

