Bachelor Degree Exam 2021 Computer Science - English

The evaluation of your fundamental and specialty knowledge will be done through an oral exam which will consist of:

- 6 problems (with open-ended answers):
 - o 2 from the field of Operating Systems
 - o 2 from the field of Databases
 - o 2 from the field of Algorithms and Programming
 - 1 pertaining to Algorithms
 - 1 pertaining to Programming
- The time for solving the 6 problems: 20 minutes
- The time for presenting your answer: 10 minutes
- Scoring will be done as follows:
 - o one score (1-10) for each field (including 1 point by default)
 - \circ $\;$ the final score will be the arithmetic mean of the scores for each of the 3 fields

Note

- 1. For each question there will be a score for the correct answer and a score for justifying the answer.
- 2. The code samples for **Algorithms and Programming** are given and required to be in the C++ programming language.

Exam Sample Paper

OPERATING SYSTEMS

a. Establish the truth value of the statements below regarding the command given. Justify your answer.

grep -E -i '^[aeiou]{2,3}.*[^0-9]\$' a.txt

i. Displays from a.txt only the lines that start with "a" or "A"

ii. It will not display from a.txt any line shorter than 3 characters.

b. Establish the truth value of the statements below regarding the given code fragment. Justify your answer.

```
1 if(fork() == 0) {
2    fork();
3    fork();
4 }
```

i. Line 2 is executed by 2 processes.

ii. The IF condition is only evaluated by the parent process.

DATABASES

P1 Consider a relation with schema R[Cod1, Cod2, Cod3, C1, C2, C3, C4, C5] and the instance below. {Cod1, Cod2, Cod3} is the primary key.

Cod1	Cod2	Cod3	C1	C2	С3	C4	C5
1	1	1	10	5	2	10	1
1	1	2	10	6	3	20	1
1	1	3	20	7	2	15	2
2	1	1	20	1	4	20	1
2	1	2	30	2	5	10	1
2	2	1	30	3	5	30	2
3	1	1	40	4	5	25	2
3	1	2	40	4	5	20	1

Compute the difference between the cardinality of the first query's result set and the cardinality of the second query's result set. Justify your answer.

SELECT C1, COUNT(*), MIN(C4) FROM R WHERE C3 IN (2, 5) GROUP BY C1, C2

SELECT Cod1, COUNT(*), MAX(C5) FROM R GROUP BY Cod1 HAVING COUNT(*) > 2

P2 Let $\{A, B\} \rightarrow \{D, E\}$ and $\{CodP, B\} \rightarrow \{D\}$ be two functional dependencies. For each dependency, state whether or not it's satisfied by the data in the relation below. Justify your answer.

CodP	CodQ	Α	В	С	D	E
1	1	1	1	9	2	2
1	2	2	2	6	3	1
1	3	2	2	4	3	1
2	1	3	3	9	4	5
2	2	4	4	3	2	3
3	1	1	1	5	2	3
3	2	4	3	3	1	2

ALGORITHMS AND PROGRAMMING

P1 [ALGORITHMS] What does the recursive algorithm below compute, if called as Computation(x, n, 1, 1, 0), given that x[1], x[2], ..., x[n] is a sequence of natural numbers? Justify your answer.

```
Function Computation (x, n, i, y, j) is

If n < i then

If j = n then

Computation \leftarrow 0

else

Computation \leftarrow y * (n - j)

EndIf

else

If (x[i] \ge 10) and ((x[i] \mod 100) \mod 11 = 0) then

Computation \leftarrow Computation(x, n, i + 1, y * x[i], j)

else

Computation \leftarrow Computation(x, n, i + 1, y, j + 1)

EndIf

EndIf

EndIf

EndIf
```

P2 [**PROGRAMMING**] What is the effect of the compilation and execution of the following program? Justify your answer.

```
#include <iostream>
using namespace std;
class Vehicle{
     protected:
        double speed;
     public:
        Vehicle(double ms) {speed=ms; }
        virtual void go() {cout<<"Vehicle going ..."<<endl;}</pre>
        void accelerate() {cout<< "Vehicle accelerating..."<<endl;}</pre>
};
class Scooter:public Vehicle{
      public:
        Scooter(double s) { speed=s; }
        void go() {cout<<"Scooter going ..."<<endl;}</pre>
        void accelerate(int s) {cout<<"Accelerating with "<<s<<"..."<<endl;}</pre>
};
int main() {
    Scooter s(1);
    Vehicle& v=s;
    v.go();
    v.accelerate();
    return 0;
```