SYLLABUS

MATHEMATICAL MODELING

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babes-Bolyai University Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Mathematics
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Distributed Systems in Internet
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the discipline	Mathema	tical	Modeling			Discipline code	MME3030
2.2. Course coordinator			As	soc. P	rof. PhD. Marcel-Adrian	Şerban	
2.3. Seminar coordinator			As	soc. P	rof. PhD. Marcel-Adrian	Şerban	
2.4. Year of study 1 2	.5. Semester	1	2.6. Type of evaluation	on	Е	2.7. Discipline regime	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar	1	
3.4. Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar	14	
Time allotment for individual study (ID) and self-study activities (SA)					hours	
Learning using manual, course support,	bibliograp	ohy, course notes (SA)			20	
Additional documentation (in libraries,	Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					20	
Tutorship						
Evaluations					28	
Other activities:						
3.7. Total individual study hours 108						
3.8. Total hours per semester 150						
3.9. Number of ECTS credits 6						

4. Prerequisites (if necessary)

in increduisites (in necessary)						
4.1. curriculum						
4.2. competencies						

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired ¹

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	 C1.2 Correct explanation and interpretation of mathematical concepts, using specific language C 2.4 Comparative analysis of the results obtained by solving problems with pre-existing data C4.2 Explain and interpret mathematical models
Transversal competencies	 CT 1. Applying the rules of rigorous and efficient work, manifesting responsible attitudes towards the scientific and didactic field, for the optimal and creative capitalization of one's own potential in specific situations, respecting the principles and norms of professional ethics. CT 3. Efficient use of information sources and resources of communication and assisted professional training, both in Romanian and in a language of international circulation

6.2. Learning outcomes

Knowledge	 The student knows: Specific concepts related to mathematics disciplines necessary for completing assignments. Fundamental concepts of discrete and continuous dynamical systems. Methods for creating and analyzing mathematical models from different fields of science modeled by difference equations and differential equations using MAPLE
Skills	 The student is able to: Construct clear and well-supported mathematical arguments to explain problems, topics, and mathematical ideas in writing. Improved modeling abilities: mathematical modelling, model analysis, numerical simulations using MAPLE
Responsibility and autonomy:	 The student has the ability to: Independently explore certain mathematical content, relying on already acquired ideas and tools, to expand their knowledge. Independently extend already acquired mathematical ideas and arguments to a mathematical topic that has not been previously studied.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to describe real world phenomena in mathematical language Improved modeling abilities: mathematical modelling, model analysis, numerical simulations using MAPLE
7.2 Specific objective of the discipline	 Acquire knowledge about discrete and continuous dynamical systems Apply discrete and continuous dynamical systems in mathematical modelling of real world phenomena Understand and work with mathematical models

8. Content

8.1 Course	Teaching methods	Remarks
1. Mathematical Models. Modelling Change	Interactive exposure	
with Difference Equation	Explanation	

	Conversation
	Didactical demonstration
	Interactive exposure
2. Solving Difference Equations with MAPLE	Explanation
	Conversation
	Didactical demonstration
	Interactive exposure
3. First Order Difference Equations.	Explanation
Equilibrium Points. Periodic Points. Stability	Conversation
	Didactical demonstration
4. Higher Order Difference Equations, Systems	Interactive exposure
of Difference Equations. Equilibrium Points.	Explanation
Stability	Conversation
Stability	Didactical demonstration
	Interactive exposure
5. Mathematical Models Given by Difference	Explanation
Equations	Conversation
	Didactical demonstration
	Interactive exposure
6. Mathematical Models Given by Systems of	Explanation
Difference Equations	Conversation
	Didactical demonstration
	Interactive exposure
7 Calving Differential Equations with MADLE	Explanation
7. Solving Differential Equations with MAPLE	Conversation
	Didactical demonstration
	Interactive exposure
8. Approximate Solutions for Differential	Explanation
Equations	Conversation
	Didactical demonstration
	Interactive exposure
9. Autonomous Differential Equations.	Explanation
Equilibrium Solutions. Stability	Conversation
	Didactical demonstration
	Interactive exposure
10. Mathematical Models Given by First Order	Explanation
Differential Equations	Conversation
_	Didactical demonstration
	Interactive exposure
11 Mathematical Models for Single Denvilation	Explanation
11. Mathematical Models for Single Population	Conversation
	Didactical demonstration
	Interactive exposure
12. Mathematical Models for Interacting	Explanation
Populations	Conversation
	Didactical demonstration
	Interactive exposure
12 Mathematical Madela in Enidentials	Explanation
13. Mathematical Models in Epidemiology	Conversation
	Didactical demonstration
14 Trends and Entrino Divisitions in	Interactive exposure
14. Trends and Future Directions in	Explanation
Mathematical Modeling with Dynamical	Conversation
Systems	Didactical demonstration
Rihliography	1

Bibliography

- 1. Saber Elaydi, An Introduction to Difference Equations, Springer, 2005
- 2. F.R. Giordano, M.D. Weir, W.P. Fox, A first course in mathematical modeling, Brooks/Coole, 2003.
- 3. D.K. Arrowsmith, Dynamical systems, Differential equations, maps and chaotic behaviour, Chapmann and Hall, 1992.
- 4. Lynch S. Dynamical systems with applications using MAPLE, Birkhauser, 2001.
- 5. Ronald W. Shonkwiler, Mathematical Biology. An Introduction with Maple and Matlab, Springer, 2009.
- 6. J.D. Murray, Mathematical biology, Springer, 2001

	_	-
8.2 Seminar / laboratory	Teaching methods	Remarks
	Exercise	
1. Modelling Change with Di¤erence Equations	Explanation	
	Didactical demonstration	
	Exercise	
2. Solving Difference Equations with MAPLE	Explanation	
	Didactical demonstration	
3. Mathematical Models Given by Difference	Exercise	
Equations and Systems of Difference Equations	Explanation	
Equations and systems of Difference Equations	Didactical demonstration	
	Exercise	
4. Solving Differential Equations with MAPLE	Explanation	
	Didactical demonstration	
5. Mathematical Models Given by Differential	Exercise	
Equations	Explanation	
Equations	Didactical demonstration	
6. Mathematical Models Given by Systems of	Exercise	
Differential Equations	Explanation	
Differential Equations	Didactical demonstration	
	Exercise	
7. Mathematical Models in Epidemiology	Explanation	
	Didactical demonstration	

Bibliography

- 1. Saber Elaydi, An Introduction to Difference Equations, Springer, 2005
- 2. Lynch S. Dynamical systems with applications using MAPLE, Birkhauser, 2001.
- 3. Ronald W. Shonkwiler, Mathematical Biology. An Introduction with Maple and Matlab, Springer, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad. This discipline is useful in preparing future researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
	Knowledge of concepts and basic results		
10.4 Course	Ability to justify by proofs theoretical results	Final written exam	80%
10.5 Seminar/laboratory	Ability to apply concepts and results acquired during the course in problem solving	Two problem-solving assignment with solutions	20%
	Ability to apply concepts and results acquired		

	during the course in		
	problem solving using		
	mathematical software		
	MAPLE		
10.6 Minimum standard of performance			
 Successful passing of the exam is conditioned by the final grade that must be at least 5. 			
_	_		
11. Labels ODD (Sustainable Development Goals) ²			

Not applicable.

Date: Signature of course coordinator Signature of seminar coordinator 11.04.2025

Assoc. Prof. PhD. Marcel-Adrian ŞERBAN Assoc. Prof. PhD. Marcel-Adrian ŞERBAN

Date of approval: Signature of the head of department 25.04.2025

Prof. Dr. Andrei-Dorin MĂRCUŞ

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for Sustainable Development - if not applicable. If no label describes the discipline, delete them all and write "Not applicable.".