SYLLABUS

Approximation and Numerical Calculus Techniques (Tehnici de aproximare si de calcul numeric)

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Master
1.6. Study programme/Qualification	Metode Moderne in Predarea Matematicii
1.7. Form of education	frecventa

2. Information regarding the discipline

2.1. Name of the discipline		Аррі	Approximation and Numeric Techniques			Calcul	us	Discipline code	MME3162
2.2. Course coordinator				Assoc. Prof. Teodora Catinas					
2.3. Seminar coordinator				Assoc. Prof. Teodora Catinas					
2.4. Year of study	2	2.5. Semester	2	2.6. Type of evaluat	tion	Е	2.7. Di	scipline regime	Optional (DS)

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4. Total hours in the curriculum	36	of which: 3.5 course	24	3.6 seminar/laborator	12
Time allotment for individual study	(ID) and	self-study activities (S	SA)		hours
Learning using manual, course support	t, bibliogr	aphy, course notes (SA	<u>(</u>)		54
Additional documentation (in libraries	Additional documentation (in libraries, on electronic platforms, field documentation)				
Preparation for seminars/labs, homework, papers, portfolios and essays					55
Tutorship					20
Evaluations					30
Other activities:					
3.7. Total individual study hours 189					•
3.8. Total hours per semester	3.8. Total hours per semester 225				
3.9. Number of ECTS credits 9					

4. Prerequisites (if necessary)

4.1. curriculum	 knowledge of main notions and procedures of numerical analysis and ability to work with them.
	 Ability to program in MATLAB for implementing numerical algorithms.
4.2. competencies	 ability to work and solve problems with concepts of Numerical Analysis.
	 Improvment of programming skills in MATLAB for implementing numerical
	algorithms.
	 Comparative assessment and efficient use of various methods of demonstration

5. Conditions (if necessary)

5.1. for the course	Blackboard, projector
5.2. for the seminar /lab activities	Laboratory with computers.

6.1. Spec	ific competencies acquired ¹
Professional/essential competencies	 C1.1: Identifications of notions, descriptions of theories and use of the specific language C3.1 Description of concepts, theory and models used in application domain C3.2 Identify and explain the basic computer science models corresponding to application domain C3.3 Use of computer science and mathematical models and tools for solving specific problems in the application field C3.4 Data and model analysis C4.1 Defining basic concepts, theory and mathematical models C4.2 Interpretation of mathematical models C4.3 Identifying the appropriate models and methods for solving real-life problems C4.5 Embedding formal models in applications from various areas
Transversal competencies	 CT1 Application of efficient and organized work rules, of responsible attitudes towards the didactic-scientific domain, to creatively value one's own potential, with the respect towards the principles and norms of professional etic. CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities to value the knowledge, to adapt to requirements of a dynamic society and to communicate in Romanian language and in a language of international circulation.

6.2. Learning outcomes

Knowledge	The student knows: - fundamental notions of Numerical Anlysis and knows how to apply them in other domains of Mathematics and Computer Science.
Skills	The student is able to: - solve problems applying Numerical Analysis concepts - proof some theorems using mathematical language - implement numerical algorithms using MATLAB
Responsibility and autonomy:	The student has the ability to work independently to obtain - extended results for some others areas of Mathematics or Computer Science - numerical algorithms that can be applied in practical problems from real life.

7. Objectives of the discipline (outcome of the acquired competencies)

 1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

7.1 General objective of the discipline	 to understand and use basic concepts of Numerical Analysis be able to implement numerical algorithms in order to solve practical problems. Assimilation of modern techniques of approximation of functions. Knowledge, understanding and use of some classical and modern concepts of Numerical Analysis
7.2 Specific objective of the discipline	 Consolidation of theoretical and practical knowledge about the basic numerical algorithms. Acquire some theoretical and practical knowledge regarding classical and modern procedures of numerical analysis Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics. Ability to use mathematical software and advanced methods of numerical analysis and programming for numerical solving of problems. Ability to apply numerical algorithms to solve practical and real life problems. Ability to model and analyze from a mathematical point of view real processes from other sciences, economics and engineering

8. Content

8.1 Co	urse	Teaching methods	Remarks
1.	Introductive notions. Least squares	Exposure: description,	
	approximation.	explanation, examples.	
2.	Discrete least squares approximation: linear	Exposure: description,	
	and polynomial least squares.	explanation, examples,	
		proofs.	
3.	Gram-Schmidt process. Least squares	Exposure: description,	
	approximation using orthogonal polynomials.	explanation, examples.	
	QR and SVD decompositions.		
4.	Numerical methods for solving differential	Exposure: description,	
	equations.	explanation, examples.	
5.	Positive linear operators: preliminaries,	Exposure: description,	
	definitions properties, Bohman-Korovkin	explanation, examples,	
	theorems. Modulus of continuity. Properties.	proofs.	
6.	Modulus of smoothness. Properties. The	Exposure: description,	
	approximation error.	explanation, examples,	
		proofs.	
7.	Bernstein operators. Casteljau algorithm.	Exposure: description,	
	Bernstein operators on square and triangle	explanation, examples,	
		proofs, dialogue.	
8.	Operators of Bernstein type: Schurer, Cheney-	Exposure: description,	
	Sharma	explanation, examples.	
9.	Operators of Bernstein type: Stancu,	Exposure: description,	
	Kantorovich and Durrmeyer operators.	explanation, examples.	
10.	Extensions of some classical univariate	Exposure: description,	
	interpolation methods to multivariate case.	explanation, examples.	
11.	Some applications of the interpolation	Exposure: description,	
	processes to surfaces generation.	explanation, examples.	
12.	Presentation of a synthesis work.	Exposure: description,	
		explanation, examples.	

Bibliography

- 1. O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmbitaş, *Analiză Numerică și Teoria Aproximării*, vol. III, Ed. Presa Univ. Clujeană, 2002;
- 2. R. L. Burden, J. D. Faires, Numerical Analysis, PWS Publishing Company, 2010.
- 3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză numerică, Ed. Presa Univ. Clujeană, 2010.
- 4. Gh. Coman, T. Cătinaș, și alții, *Interpolation operators*, Ed. Casa Cărții de Știință, Cluj-Napoca, 2004.

- 5. Gh. Coman, I. Chiorean, T. Cătinaș, *Numerical Analysis*. *An Advanced Course*, Ed. Presa Univ. Clujeană, 2007.
- 6. S. D. Conte, Carl de Boor, *ELEMENTARY NUMERICAL ANALYSIS*. *An Algorithmic Approach*, SIAM, 2017.
- 7. W. Gander, M.J. Gander, F. Kwok, Scientific Computing, Springer Internat. Publishing, 2014.
- 8. W. Gautschi, Numerical Analysis. An introduction, Birkhauser, Basel, 1997
- 9. R. Plato, Concise Numerical Mathematics, Amer. Math. Soc., 2003.
- 10. D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbitas, *Analiză Numerică și Teoria Aproximării*, vol. I, Ed. Presa Univ. Clujeană, 2001;
- 11. D.D. Stancu, Gh. Coman, P. Blaga, *Analiză Numerică și Teoria Aproximării*, vol. II, Ed. Presa Univ. Clujeană, 2002;

12. R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

8.2 Seminary/Laboratory	Teaching methods	Remarks
1-2 Introductory examples and problems.	Explanation, dialogue.	
3-4 Discrete least square approximation (linear and	Explanation, dialogue,	
polynomial) and continuous least square	examples.	
approximation. Practical examples.		
5-6 Gram-Schmidt algorithm. QR and SVD	Explanation, dialogue,	
decompositions.	practical examples.	
7-8 Numerical methods fro differential equations	Explanation, dialogue,	
	practical examples.	
9-10 Generation of some Bernstein-type operators.	Explanation, dialogue,	
Casteljau algorithm.	practical examples.	
	Evaluation.	
11-12 Some applications of extensions of classical	Explanation, dialogue,	
univariate interpolation methods to multivariate	practical examples.	
case.	Evaluation.	
Ending of evaluation for seminar/lab work		

Bibliography

- 1. R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 2010.
- 2. W. Gander, M.J. Gander, F. Kwok, Scientific Computing, Springer Internat. Publishing, 2014.
- 3. A. Kharab, R. B. Guenther, *An introduction to numerical methods. A Matlab approach*, Taylor&Francis Group, 2006.
- 4. R. Trîmbitas, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
	- know the basic	Written exam	60%
	principles of Numerical		
10.4 Course	Analysis;		
10.4 Course	- apply the course		
	concepts in problem		
	solving		
	- be able to implement	Evaluation and	Lab 30%
10.5 Seminar/laboratory	course concepts and	continuous observations	
	algorithms	during the semester.	

	- apply techniques for different practical problems	Study for preparing a synthesis work.	10%			
10.6 Minimum standard o	10.6 Minimum standard of performance					
At least grade 5 (fi	rom a scale of 1 to 10) at both	h written exam and laboratory	y work.			

11. Labels ODD (Sustainable Development Goals)²

General label for Sustainable Development									
							9 INDUSTRY, INNOVATION AND INFRASTRUCTURE		

Date: Signature of course coordinator Signature of seminar coordinator 27.03.2025

Conf. Dr. Teodora Cătinaș

Conf. Dr. Teodora Cătinaș

Hatin

Hatin

Date of approval: 25.04.2025

Signature of the head of department

Prof. dr. Andrei Mărcuș

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.