SYLLABUS

Topics in Algebra III (for teachers in Mathematics)

University year 2025-2026

1. Information regarding the programme

1.1 Higher education institution	Universitatea Babeș-Bolyai Cluj-Napoca
1.2 Faculty	Matematică și Informatică
1.3 Department	Matematică
1.4 Field of study	Matematică
1.5 Study cycle	Master
1.6 Study programme / Qualification	Metode moderne in predarea matematicii / Modern Methods in
	Mathematics Teaching
1.7. Form of education	Cu frecvență

2. Information regarding the discipline

2.1. Name of the di	scipli	ne Topics in A	Topics in Algebra III (for teachers in I				ics)	Discipline code	MMR3048
2.2. Course coordinator				Pro	of. Sim	ion Br	eaz		
2.3. Seminar coordinator				Pro	of. Sim	ion Br	eaz		
2.4. Year of study	2	2.5. Semester	4	2.6. Type of evaluation	on	Е	2.7. [Discipline regime	optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar/laboratory	12
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bib	liogra	aphy, course notes			42
Additional documentation (in libraries, on	electr	onic platforms, field docu	mentat	ion)	50
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					25
Evaluations					22
Other activities					-
3.7 Total individual study hours 189					
3.8 Total hours per semester 225					
3.9 Number of ECTS credits					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6.1. Specific competencies acquired ¹

ial	Using notions and results connected to generalizations for the ring ring Z;
Professional/essential competencies	Solving exercises and problems;
essional/esser competencies	To addapt the mathematics contents to various levels of dificulty;
essio	
Prof	
	To use various mathematics objects in theoretical and practical contexts.
Transversal competencies	Acquiring skills connected to the individual study
Transversal competenci	To apply theoretical results in other domains.
Trai	

6.2. Learning outcomes

Knowledge	The graduate knows fundamental notions related to Arithmetic, and methods of applying them in various contexts.
Skills	The graduate is able to use appropriate teaching materials in the field of Mathematics. The graduate has the ability to treat differently, depending on their specific needs, secondary school students in the field of Mathematics.
Responsibility and autonomy:	The graduate is able to use the acquired knowledge and skills to design, organize and implement educational approaches in the field of Mathematics. The graduate will construct clear and well-supported mathematical arguments to explain mathematical problems, topics, and ideas in writing.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Knowledge, understanding and use of main concepts and results in Number Theory
	Ability to use concepts and fundamental results in some specific fields of mathematics.
7.2 Specific objective of the discipline	Understanding the basic concepts about divisibility in integral domains. Ability to use specific results in concrete situations, e.g. to solve exercises.

8. Content

8.1 Course	Teaching methods	Remarks
1. Preliminaries	Lectures, didactical	
	demonstration, conversation	

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

2. Division with remainder.	Lectures, didactical
	demonstration, conversation.
3. Elementary divisibility	Lectures, didactical
	demonstration, conversation.
4. Greatest common divisor	Lectures, didactical
	demonstration, conversation.
5. The Euclidian Algorithm	Lectures, didactical
5. The Euchdian Algorithm	demonstration, conversation.
	demonstration, conversation.
6. Prime numbers. The Sieve of Eratostene.	Lectures, didactical
	demonstration, conversation.
	·
7. The fundamental theorem of arithmetic.	
8. Congruences	Lectures, didactical
	demonstration, conversation.
	, , , , , , , , , , , , , , , , , , , ,
9. Linear Diophantine Equations. The Chinese Remainder	Lectures, didactical
Theorem	demonstration, conversation.
10.0	
10. Residues systems and Euler's totient	Lectures, didactical
	demonstration, conversation.
11. Theorems of Fermat, Euler, Wilson	Lectures, didactical
The fire of the final date, who have	demonstration, conversation.
	demonstration, conversation.
12. Multiplicative number theoretic functions	Lectures, didactical
	demonstration, conversation.
13. Mobius Function	Lectures, didactical
	demonstration, conversation.
14. Perfect, Mersenne and Fermat numbers	Lectures, didactical
	demonstration, conversation.
Diblio amounts.	

Bibliography

- [1] Becheanu, M. si colectiv, Algebra pentru perfectionarea profesorilor, Ed. Didactica si Pedagogica, Bucuresti, 1983.
- [2] S. Breaz, C. Pelea: Exercises in Number Theory, LAP LAMBERT Academic Publishing, 2018
- [3] S. Breaz, C. Pelea: Elemente de teoria numerelor si combinatorica, Casa Cartii de stiinta, 2017.
- [4] Burton D. Elementary number theory, 6ed., MGH, 2007
- [5] Vraciu, C., Vraciu, M., Elemente de aritmetică, Ed. All, 1998

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Induction	problematization, exercises,	
	problem solving,	
2. Division with remainder.	problematization, exercises,	
	problem solving,	
3. Elementary divisibility	problematization, exercises,	
	problem solving,	
4. Greatest common divisor	problematization, exercises,	
	problem solving,	
5. The Euclidian Algorithm	problematization, exercises,	

problem solving,
problematization, exercises, problem solving,
problematization, exercises, problem solving,
problematization, exercises, problem solving,

Bibliography

- [1] T. Andreescu, D. Andrica: Number Theory. Structure, examples and problems, Birkhauser, 2009.
- [2] S. Breaz, C. Pelea: Exercises in Number Theory, LAP LAMBERT Academic Publishing, 2018.
- [3] S. Breaz, C. Pelea: Elemente de teoria numerelor si combinatorica, Casa Cartii de stiinta, 2017.
- [4] Panaitopol, L., Serbanescu, D.: Probleme de teoria numerelor si combinatorica pentru juniori, Ed. Gill
- [5] ***, Probleme date la diverse concursuri.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content is in accordance with the curricula of many important universities where pure mathematics plays important places in their research.

This discipline is useful since it realizes connections between various mathematical domains, and it is well known that the methods of arithmetic were used during the time to solve theoretica an practical problems (e.g. in cryptography).

The methods and tools presented here are often used in specifical PhD research activities.

10. Evaluation

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade	
			(%)	
10.4 Course	Concepts and basic results	Final exam	50%	
	Standard examples			
10.5 Seminar/lab activities	Ability to use the concepts in order to solve problems	Final exam and a midterm test.	25%+25%	
10.6 Minimum performance s	tandards			
At least grade 5 from	10.			

Labels ODD (St	ustainable	Developmen	t Goals) ²						
(General lal	bel for Sustai	nable Develo	pment					
								9 INDUSTRY, INNO AND INFRASTRU	
Date:		Signa	ature of cour	rse coordinat	cor	Signature of	seminar coo	rdinator	
11.04.2025									
Date of appro	oval:				Signatu	re of the hea	d of departn	nent	
25 04 2025	, , , , ,				8				

Prof. dr. Andrei Mărcuș

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.