SYLLABUS

Mathematical Software

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Mathematics and Computer Science in English
1.7. Form of education	Full-time study

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Mathema	Mathematical Software			Discipline code	MLE0026
2.2. Course coordin	nator		Lect. Dr. Parajdi Lorand Gabriel				
2.3. Seminar coordinator Lect.			Dr. Parajdi Lorand Gabrie	l			
2.4. Year of study	3	2.5. Semester	5	2.6. Type of evaluation	Е	2.7. Discipline regime	Optional Package 3

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	5	of which: 3.2 course	2	3.3 seminar/laboratory	0/2/1
3.4. Total hours in the curriculum	70	of which: 3.5 course	28	3.6 seminar/laborator	0/28/ 14
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support,	bibliograp	ohy, course notes (SA)			20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					12
Tutorship					4
Evaluations					8
Other activities: academic consultations and software-related support					2
3.7. Total individual study hours70 + 56					
3.8. Total hours per semester			126		
3.9. Number of ECTS credits			5		

4. Prerequisites (if necessary)

4.1. curriculum	Programming backgrounds
4.2. competencies	Programming skills

5. Conditions (if necessary)

5.1. for the course	Videoprojector (offline), MSTeams or Zoom (online)
5.2. for the seminar /lab activities	Computer Network, Mathematical Software (Maple, MATLAB)

6.1. Specific competencies acquired

Professional/essential competencies	 C3.1. Identifying the basic concepts used in the construction and specification of algorithms C3.3 Applying specific techniques and methods for designing algorithms
Transversal competencies	• CT3. Using effective methods and techniques for learning, information gathering, research, and developing the ability to apply knowledge, adapt to the demands of a dynamic society, and communicate in Romanian and in an international language.

6.2. Learning outcomes

Knowledge	 The student knows: the basic concepts and fundamental principles of using mathematical software in solving mathematical and applied problems the functionalities and usage of specialized mathematical software packages methods for graphical visualization of functions, data, and numerical solutions techniques for numerical and symbolic computation assisted by computer elementary notions of mathematical programming and automation of computational processes ways of integrating mathematical software into the processes of modeling, analysis, and result verification
Skills	 The student is able to: use mathematical software to perform numerical and symbolic computations graphically represent functions, equation solutions, data, and mathematical models apply specialized software packages to solve problems in linear algebra, numerical analysis, and related fields develop and interpret simple codes or scripts for automating mathematical computations critically analyze results obtained using software by comparing numerical and analytical solutions integrate software tools into individual research projects or mathematical assignments
Responsibility and autonomy:	 The student has the ability to work independently to obtain: applying acquired knowledge to solve mathematical problems using specialized software developing and testing computational solutions in various contexts, with minimal guidance from the instructor conducting individual research and deepening the understanding of advanced software functionalities preparing and delivering assignments, projects, or presentations involving mathematical digital tools critically evaluating one's own results and adopting alternative solutions when necessary managing study time and digital resources in a responsible and efficient manner

7.1 General objective of the
discipline• Introducing students to the use of mathematical software and computational
tools
• Providing foundational knowledge in computer-assisted computation and
numerical software7.2 Specific objective of the
discipline• Using computers to solve routine mathematical problems
• Applying mathematical software as a teaching and learning tool

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course	Teaching methods	Remarks
	Lecture, lecture with	
	demonstrations, demonstration	
1. Introduction to mathematical software.	using electronic teaching tools,	
Introduction to Maple	problem-based learning,	
	individual study, and the use of	
	mathematical software.	
	Lecture, lecture with	
	demonstrations, demonstration	
2. Differential and integral calculus in Maple	using electronic teaching tools,	
2. Differential and integral calculus in Maple	problem-based learning,	
	individual study, and the use of	
	mathematical software.	
	Lecture, lecture with	
	demonstrations, demonstration	
3. Functions, procedures, and programming in	using electronic teaching tools,	
Maple	problem-based learning,	
	individual study, and the use of	
	mathematical software.	
	Lecture, lecture with	
4. Graphical representations and data	demonstrations, demonstration	
visualization using Maple	using electronic teaching tools,	
visualization using Maple	problem-based learning,	
	individual study, and the use of	
	mathematical software.	
	Lecture, lecture with	
	demonstrations, demonstration	
5. Matrix operations in MATLAB. Programming	using electronic teaching tools,	
in MATLAB	problem-based learning,	
	individual study, and the use of	
	mathematical software.	
	Lecture, lecture with	
	demonstrations, demonstration	
6. Graphical representations and data	using electronic teaching tools,	
visualization using MATLAB	problem-based learning,	
	individual study, and the use of	
	mathematical software.	
	Lecture, lecture with	
7. Mathematical computations in MATLAB:	demonstrations, demonstration	
linear algebra, numerical analysis, data	using electronic teaching tools,	
analysis, and solving differential equations	problem-based learning,	
	individual study, and the use of	
Bibliography	mathematical software.	

- 1. The Mathworks, MATLAB set of manuals.
- 2. Cleve Moler, *Numerical Computing in* MATLAB, SIAM, 2005
- 3. D. J. Higham, N. J. Higham, MATLAB Guide, 2nd edition, SIAM, 2005
- 4. Radu Trimbitas, Numerical Analysis in MATLAB, Cluj University Press, 2009
- 5. P. Marchand, O. T. Holand, Graphics and GUI with MATLAB, 3rd edition, Barnes and Noble, 2003
- 6. Robert M. Corless, *Essential* Maple 7, Springer 2002
- 7. A. Heck, Introduction to Maple, 3rd edition, Springer, 2003
- 8. V. Anisiu, *Calcul simbolic cu* Maple. Presa Universitara Clujeana, 2006
- 9. T.A. Driscoll, *Learning* MATLAB, SIAM 2009
- 10. Ian Thompson, Understanding Maple, Cambridge University Press, 2017
- 11. W. Fox, W. Bauldry, Advanced Problem Solving with Maple™ A First Course, CRC Press, 2020

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction to Maple	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
2. Assignments and unassignment in Maple	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
3. Symbolic representation and simplification of expressions in Maple; applying the <i>assume</i> command	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
4. Differentiation, integration, and sum computation in Maple	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
5. Maple: instructions, functions, procedures	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
6. Two-dimensional and three-dimensional plotting in Maple. Special plots and animations	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
7. Maple: equations, recurrence relations, and linear algebra	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
8. Introduction to MATLAB	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
9. Matrices in MATLAB: generation, indexing, matrix and vector operations	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
10. Control flow, M-files, data types, and advanced data structures in MATLAB	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
11. 2D and 3D graphical representations in MATLAB, in Cartesian and other coordinate systems	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
12. Advanced graphics in MATLAB: animations, special plots, volume visualization, and GUI development	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	

13. Numerical methods in MATLAB: interpolation, least squares approximation, solving systems of equations, and computing eigenvectors and eigenvalues	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
14. Numerical methods for solving differential equations in MATLAB	Demonstrations supported by digital teaching tools, combined with individual study and practical use of mathematical software.	
Bibliography 1. Radu Trimbitas, <i>Numerical Analysis in</i> M	IATLAB, Presa Universitara Clujeana 2009	

- 2. A. Heck, Introduction to Maple, 3rd edition, Springer, 2003
- 3. V. Anisiu, *Calcul simbolic cu* Maple. Presa Universitara Clujeana, 2006
- 4. Driscoll T.A., *Learning* MATLAB, SIAM 2009
- 5. W. Fox, W. Bauldry, *Advanced Problem Solving with* Maple[™] *A First Course*, CRC Press, 2020

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is included in the study programs of prestigious universities in Romania and abroad
- The practical importance of mathematical software
- The use of mathematical software as an auxiliary tool in teaching and research

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Ability to solve mathematical problems using Maple and MATLAB	Practical final exam	80%
10.5 Seminar/laboratory	Completing mandatory assignments and actively participating in lab sessions	Individual evaluation	20%
10.6 Minimum standard of A minimum grade 	*	imum grade of 5 for laboratory	v activity

11. Labels ODD (Sustainable Development Goals)

Not applicable.

Date: 11.04.2025

Signature of course coordinator

Lect. Dr. Parajdi Lorand Gabriel

Signature of seminar coordinator

Lect. Dr. Parajdi Lorand Gabriel

Signature of the head of department

Prof. dr. Andrei Mărcuș

Date of approval: 25.04.2025