SYLLABUS

Theoretical Mechanics

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Mathematics and Computer Science
1.7. Form of education	Full-Time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Theoretic	Theoretical Mechanics					MLE0025
2.2. Course coordinator				Prof. dr. Teodor Grosan				
2.3. Seminar coordinator					Prof. d	r. T	Teodor Grosan	
2.4. Year of study	2	2.5. Semester	Semester 2 2.6. Type of evaluat				2.7. Discipline regime	DF

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	4	3.3 seminar/laboratory	4
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laborator	28
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)					22
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					7
Evaluations					8
Other activities:					-
3.7. Total individual study hours 69					
3.8. Total hours per semester	125				
3.9. Number of ECTS credits	5				

4. Prerequisites (if necessary)

4.1. curriculum	Calculus 2 (Differential and Integral Calculus in R ⁿ); Analytical Geometry; Differential Geometry of Curves and Surfaces; Differential Equations
4.2. competencies	There are useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector			
5.2. for the seminar /lab activities	Classroom with blackboard/video projector			

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	 C2.3 Application of theoretical methods of analysis adequate to the issue data. C4.3 Construction of mathematical model using methods, techniques and appropriate tools. Knowledge of the basic concepts of Mechanics Ability to understand and use fundamental results in geometry, differential and integral calculus, and the theory of differential equations to study particular problems of motion and to provide applications.
Transversal competencies	 CT1 Applying rigorous and effective work rules, manifest responsible attitude to science and teaching, and creative order to maximize their potential in specific situations, the principles and rules of professional ethics. Ability to apply the studied concepts, to inform themselves, to work independently or in a team in order to carry out studies and to solve complex problems. Ability for continuous self-perfecting and study.

6.2. Learning outcomes

Г

Knowledge	The graduate knows fundamental notions related to Theortical Mechanics and methods of applying them to areas of science related to Mathematics, Mechanics and Engineering.
Skills	The graduate is able to explain theoretical notions, problem-solving methods, paradigms, etc. used in various branches of Mathematics related to secondary education. The graduate is able to introduce new and innovative elements in the instructive-educational process of the field Mathematics, if it is considered necessary/useful.
Responsibility and autonomy:	The student has the ability to work independently to obtain and solve mathematical models in Mechanics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Knowledge, understanding and use of main concepts and results of Mechanics.		
	Acquiring basic and advanced knowledge in Mechanics.		
	Acquiring basic concepts of kinematics of material point and kinematics of rigid body.		
7.2 Specific objective of the discipline	Acquiring basic concepts of dynamics of material point and of systems of material points.		
	Understanding fundamental problems and results in rigid body dynamics.		
	Ability to apply and use mathematical models to describe and analyze problems of Mechanics.		

8. Content

8.1 Course	Teaching methods	Remarks
Introduction. Fundamental notions of	Lectures, modeling, didactical	
Mechanics. Kinematics of material point:	demonstration, conversation.	
Trajectory, motion equations, velocity and	Presentation of alternative	
acceleration of material point. Kinematics of	explanations.	
material point in Cartesian and intrinsic	explaitations.	
-		
coordinates (Frénet's coordinate system).	Leatures modeling didestical	
Curvilinear coordinates. Examples of	Lectures, modeling, didactical	
orthogonal curvilinear coordinates: cylindrical,	demonstration, conversation.	
polar, and spherical coordinates.	Presentation of alternative	
	explanations.	
Kinematics of rigid body: Euler's angles.	Lectures, modeling, didactical	
Motion equations. Poisson's formulas.	demonstration, conversation.	
	Presentation of alternative	
	explanations.	
The distribution of velocity and acceleration in	Lectures, modeling, didactical	
rigid body. Translational motion of rigid body.	demonstration, conversation.	
Kinematics of rotation of rigid body around a	Presentation of alternative	
fixed axis. Kinematics of rotation of rigid	explanations.	
body around a fixed point.		
General motion of free rigid body. Helical	Lectures, modeling, didactical	
motion. Plane motion of rigid body (I): Pure	demonstration, conversation.	
rotation. Instantaneous centre of rotation.	Presentation of alternative	
	explanations.	
Plane motion of rigid body (II): Curves	Lectures, modeling, didactical	
described by the instantaneous centre of	demonstration, conversation.	
rotation. Kinematics of relative motion:	Presentation of alternative	
definitions, distribution of velocitis and	explanations.	
accelerations, Coriolis' formulas, Coriolis'		
Theorem.		
Dynamics of material point: Newton's laws of	Lectures, modeling, didactical	
Dynamics. Newton's equation. Dynamics of	demonstration, conversation.	
free material point.	Presentation of alternative	
	explanations.	
General theorems of dynamics of material	Lectures, modeling, didactical	
point.	demonstration, conversation.	
	Presentation of alternative	
	explanations.	
Motion under the influence of a central force.	Lectures, modeling, didactical	
Binet's equation. The case when the central	demonstration, conversation.	
force depends only on the distance: $f = f(r)$.	Presentation of alternative	
	explanations.	
The universal attraction law. Newton's	Lectures, modeling, didactical	
problem.	demonstration, conversation.	
	Presentation of alternative	
	explanations.	
Dynamics of material point subject to	Lectures, modeling, didactical	
constraints: The motion on a fixed surface, or	demonstration, conversation.	
on a fixed curve. Mathematical pendulum.	Presentation of alternative	
r	explanations.	
Dynamics of systems of material points.	Lectures, modeling, didactical	
General theorems of dynamics of systems of	demonstration, conversation.	
material points.	Presentation of alternative	
F F F	explanations.	
General theorems of the motion of systems of	Lectures, modeling, didactical	
material points around their mass center.	demonstration, conversation.	
material points around men mass center.		

Angular momentum and kinetic energy in the fixed axis rigid body motion. Moment of inertia.	Presentation of alternative explanations.	
Dynamics of the motion of a rigid body about a fixed point. Considerations on the general motion of a free rigid body.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	

Bibliography

1. Kohr, M., Special Topics in Mechanics, Cluj University Press, Cluj- Napoca, 2005 (in Romanian)

2. Bradeanu, P., Theoretical Mechanics, Vols. 1 and 2, Babeş-Bolyai University Press, Cluj-Napoca, 1988 (in Romanian).

3. Iacob, C., Theoretical Mechanics, Editura Didactică și Pedagogică, Bucharest, 1980 (in Romanian)

4. Dragoș, L., Principles of Analytical Mechanics, Technical Publishing House, Bucharest, 1976 (in Romanian)

5. Goldstein, H., Poole, C., Safko, J., Classical Mechanics, Reading, MA: Addison-Wessley Publ. Co. (3rd edition), 2014

- 6. Bose, S., Chattoraj, D., Elementary Analytical Mechanics, Alpha Science International Ltd. 2000
- 7. Aaron, F.D., Analytical Mechanics, BIC ALL Publishing House, Bucharest, 2002 (in Romanian)

8. Landau, L.D., Lifshitz, E.M., Mechanics, Elsevier-Butterworth-Heinemann, (3rd edition), 2005

9. Russo, R., Classical Problems in Mechanics, Aracne, Roma, 1997

8.2 Seminar / laboratory	Teaching methods	Remarks
Kinematics of material point in Cartesian and	Description of arguments and	
orthogonal curvilinear coordinates (cylindrical,	proofs for solving problems.	
shperical, and polar coordinates). Motion in	Direct answers to students.	
the Frénet coordinate system (I).	Homework assignments.	
Kinematics of material point in Cartesian and	Description of arguments and	
orthogonal curvilinear coordinates (cylindrical,	proofs for solving problems.	
shperical, and polar coordinates). Motion in	Direct answers to students.	
the Frénet coordinate system (II).	Homework assignments.	
Translational motion of rigid body. Kinematics	Description of arguments and	
of rotation of rigid body around a fixed axis.	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	
Kinematics of rotation of rigid body around	Description of arguments and	
a fixed point. Kinematics of free rigid body.	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	
Helical motion. Plane motion of rigid body (I).	Description of arguments and	
	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	
Plane motion of rigid body (II). Kinematics of	Description of arguments and	
relative motion of material point.	proofs for solving problems.	
r i i i i i i i i i i i i i i i i i i i	Direct answers to students.	
	Homework assignments.	
Dynamics of free material point. Motion of	Description of arguments and	
material point in a field of conservative forces.	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	
General theorems of dynamics of material	Description of arguments and	
point.	proofs for solving problems.	
po	Direct answers to students.	
	Homework assignments.	
Central forces (I).	Description of arguments and	
	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	
Central forces (II).	Description of arguments and	
	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	
Dynamics of material point subject to	Description of arguments and	
constraints. Dynamics of relative motion of material point.	proofs for solving problems.	

	Direct answers to students. Homework assignments.	
Dynamics of systems of material points. Moment of inertia.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
General theorems of dynamics of systems of material points (I).	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	
General theorems of dynamics of systems of material points (II). Dynamics of the motion of a rigid body about a fixed point.	Description of arguments and proofs for solving problems. Direct answers to students. Homework assignments.	

Bibliography

1. Kohr, M., Special Topics in Mechanics, Cluj University Press, Cluj- Napoca, 2005 (in Romanian)

2. Turcu, A., Kohr-Ile, M., Collection of Theoretical Mechanics Problems, Babeş- Bolyai University Press, Cluj-Napoca, 1993 (in Romanian)

3. Brādeanu, P., Theoretical Mechanics, Vols. 1 and 2, Babeş- Bolyai University Press, Cluj-Napoca, 1988

4. Bradeanu, P., Pop, I., Bradeanu D., Technical Publishing House, Bucharest, 1979 (in Romanian)

5. Brãdeanu, P., Pop, I., Stan, I., Turcu, A., Collection of Theoretical Mechanics Problems, Babeș-Bolyai University Press, Cluj-Napoca, 1976 (in Romanian)

6. Aaron, F.D., Analytical Mechanics, BIC ALL Publishing House, Bucharest, 2002 (in Romanian)

7. Goldstein, H., Poole, C., Safko, J., Classical Mechanics, Reading, MA: Addison-Wessley Publ. Co. (3rd edition), 2014

8. Landau, L.D., Lifshitz, E.M., Mechanics, Elsevier-Butterworth-Heinemann, (3rd edition), 2005

9. Russo, R., Classical Problems in Mechanics, Aracne, Roma, 199

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the applied mathematics plays an essential role. This discipline is useful in preparing future teachers and researchers in applied mathematics, as well as those who use mathematical models and methods of study in other areas (physics, chemistry, engineering, computer science).

10. Evaluation

ivity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
4 Course	Knowledge of concepts and basic results	Written exam at midterm and at the end the semester	100%	
	Ability to justify by proofs theoretical results			
5 Seminar/laboratory -	Ability to apply concepts and results acquired in the course in mathematical modeling and analysis of problems in Mechanics There are valid the official rules of the faculty concerning the attendance of students to teaching activities			
6 Minimum standard of p	erformance			
*	activities	xam		

11. Labels ODD (Sustainable Development Goals)²

General label for Sustainable Development									
							9 NOUSTRY INNOVATION AND NEPASTRUCTURE		

Date: 11.04.2025

Signature of course coordinator

Prof. Dr. Teodor Grosan

Signature of seminar coordinator

Prof. Dr. Teodor Grosan

Grosom Teodor

Date of approval: 25.04.2025

Signature of the head of department

Prof. dr. Andrei Mărcuș

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.