SYLLABUS

Advanced methods of programming software applications

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Departament of Computer Science
1.4. Field of study	Mathematics
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Mathematics Computer Science
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne	Advanced methods of programming software applications					MLE5235
2.2. Course coordinator				Assoc. Prof. PhD Bocicor Maria Iuliana				
2.3. Seminar coordinator				As	soc. Pr	of. PhD Bocicor Maria Iuli	ana	
2.4. Year of study	2	2.5. Semester	3	2.6. Type of evaluation	on	С	2.7. Discipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 sem 1 lab
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	14 + 14
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					4
Evaluations					7
Other activities:					
3.7. Total individual study hours 69					
3.8. Total hours per semester	3.8. Total hours per semester 125				
3.9. Number of ECTS credits	3.9. Number of ECTS credits 5				

4. Prerequisites (if necessary)

Trefeducites (In necessary)				
4.1. curriculum	Algorithms and Programming, Object Oriented Programming basics, Data Structures			
4.2. competencies	Average programming skills in a high level programming language			

5. Conditions (if necessary)

5.1. for the course	Classroom with projector
5.2. for the seminar /lab activities	Laboratory with computers; Java, C# and programming languages, IntelliJ IDEA/Eclipse, Visual Studio IDE
	Classroom with projector

6. Specific competencies acquired ¹

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	 Development and analysis of algorithms for solving problems. Programming in high level languages (Java, C#).
Transversal competencies	 Application of rigorous and efficient work rules, manifestation of responsible attitudes towards the didactic-scientific field, to bring optimal and creative values to own potential in specific situations, with respect to professional ethics principles and norms. Use of efficient information resources and techniques to learn and develop the professional abilities in Romanian language and in an international language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To prepare an object-oriented design of small/medium scale problems and to learn the Java programming language, as well as to create graphical user interfaces.
7.2 Specific objective of the discipline	 To use object-oriented concepts in program analysis and design. To use and implement solutions in the Java programming language. To create GUI for the given requirements. To apply design patterns in various contexts. To use classes written by other programmers when constructing their systems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Java Platform Language syntax Data types. Arrays Examples Classes, inheritance Classes Object construction Methods Inheritance, polymorphism Abstract classes, interfaces Generic types, collections in Java Generic methods Type erasure Generic classes and subtyping Wildcards Java Collections Framework Exceptions Java I/O, JUnit Exceptions Java I/O, streams, serialization JUnit	 Interactive exposure Explanation Conversation Examples Didactical demonstration 	

5. JDBC, Functional programming **IDBC API** Java 8 features: Lambda expressions, Java 8 Streams 6. Graphical User Interfaces JavaFX applications, scenes, layouts, UI controls **Events** 7. Graphical User Interfaces **Processing events** Model-View-Controller **FXML** 8. Java Reflection, Concurrency **Iava Reflection API** Concurrency: processes, threads, multithreaded programming in Java 9. Concurrency Threads in Java Thread synchronization Concurrent applications in Java 10. Design Patterns Creational patterns Structural patterns Behavioural patterns 11. Design Patterns (cont.), Introduction in C# and .NET 12. C# and .NET The .NET Architecture The C# programming language Classes in C# Generics **Delegates Events** Lambda expressions LINO 13. Revision Revision of the most important topics

Bibliography

covered by the course Examination guide

- 1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley.
- 2. Eckel, B. Thinking in Java, 4th edition, Prentice Hall, 2006.
- 3. Eckel, B. Thinking in Patterns with Java, 2004. MindView, Inc.
- 4. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Longman Publishing, 1995.
- 5. The Java Tutorials: https://docs.oracle.com/javase/tutorial/
- 6. Joseph Albahari and Ben Albahari, C# 4.0 in a Nutshell, Fourth Edition, O'Reilley, 2010.

8.2 Seminar	Teaching methods	Remarks
 Simple problems in Java. Classes. Layered architecture. 		
2. Inheritance, interfaces, packages, iterators.	Interactive exposureExplanation	The seminar is structured as a 2
3. Generics, collections, exceptions.	 Conversation 	hour class, every 2 weeks.
4. Serialization, files, JDBC.	• Examples	nour class, every 2 weeks.
5. Graphical User Interfaces with JavaFX.	Didactical demonstration	
6. Concurrency, threads.		

7. Design patterns.		
8.3 Laboratory		
 Setting up JDK, JRE and JVM, as well as an IDE of choice. Simple problems in Java. 		
2. Layered architecture, generics, exceptions.		
3. Files, serialization, JUnit.	 Explanation 	The laboratory is structured as a
4. JDBC, functional programming (Java 8 streams).	 Conversation 	2 hour class, every 2 weeks.
5. Laboratory test.		
6. Graphical User Interfaces.		
7. Practical examination.		

Bibliography

- 1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley.
- 2. Eckel, B. Thinking in Java, 4th edition, Prentice Hall, 2006.
- 3. Eckel, B. Thinking in Patterns with Java, 2004. MindView, Inc.
- 4. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Longman Publishing, 1995.
- 5. The Java Tutorials: https://docs.oracle.com/javase/tutorial/
- 6. Joseph Albahari and Ben Albahari, C# 4.0 in a Nutshell, Fourth Edition, O'Reilley, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM Curricula Recommendations for Computer Science studies.
- The content of the course is considered by the software companies as important for average software development skills.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade		
10.4 Course	The correctness and completeness of the accumulated knowledge and the capacity to design and implement correct Java programs.	Written examination (C)	30%		
	A1 111				
	Ability to use course concepts in solving real problems.	Practical examination (C)	30%		
10.5 Seminar/laboratory	Correctness of delivered laboratory assignments and laboratory tests.	Laboratory assignments. Laboratory test. Observation during the semester.	40%		
10.6 Minimum standard of performance					

- Each student has to prove that they acquired an acceptable level of knowledge and understanding of the core concepts taught in the class, that they are capable of using knowledge in a coherent form, that they have the ability to establish certain connections and to use the knowledge in solving different problems in Java.
- For participating at the examination attendance is compulsory for seminar and for laboratory activities, as follows: minimum 5 attendances for seminar and minimum 6 attendances for laboratory activities.
- Successfully passing of the examination is conditioned by a minimum grade of 5 for each of the following: practical examination, written examination and final grade.

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: 15.04.2025

Signature of course coordinator

Signature of seminar coordinator

Assoc. Prof. PhD. Bocicor Maria Iuliana

Assoc. Prof. PhD. Bocicor Maria Iuliana

Date of approval:

Signature of the head of department

•••

Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.