SYLLABUS

Complex Analysis

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Mathematics and Computer Science
1.7. Form of education	Full-time

2. Information regarding the discipline

2.1. Name of the dis	1. Name of the discipline Complex			naly	sis		Discipline code	MLE0008
2.2. Course coordinator Lecture			Lecturer	PhD	Mihai IANCU			
2.3. Seminar coord	2.3. Seminar coordinator			PhD	Mihai IANCU			
2.4. Year of study	f study 2 2.5. Semester		emester	3	2.6. Type of evaluation	Е	2.7. Discipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laborator	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support,	bibliograp	ohy, course notes (SA)			20
Additional documentation (in libraries, o	on electroi	nic platforms, field docu	mentatio	n)	12
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					
3.7. Total individual study hours69					
3.8. Total hours per semester 125					
3.9. Number of ECTS credits 5					

4. Prerequisites (if necessary)

4.1. curriculum	• Calculus 1 (Analysis on R); Calculus 2 (Differential and integral calculus in R ⁿ); Analytical geometry
4.2. competencies	• useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/whiteboard			
5.2. for the seminar /lab activities	Classroom with blackboard/whiteboard			
6.1 Specific competencies acquired 1				

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

	• C1.1 Identification the notions, describing theories and using the specific language.
ential S	• C1.4 Recognition of main classes/types of mathematical problems and selecting the adequate methods and techniques for their solving.
l/esse encie	• C5.2 Using mathematical arguments to prove mathematical results.
Professional/essential competencies	• Ability to formulate and communicate orally and in writing ideas and concepts from complex analysis.
Pr	• Ability to use various specific methods of complex analysis to approach problems in other fields of mathematics.
Transversal competencies	• CT1 Applying rigorous and effective work rules, manifest responsible attitude to science and teaching, and creative order to maximize their potential in specific situations, the principles and rules of professional ethics.
Transversal competencie	• The student must have the ability to apply the studied notions and to formulate mathematical models of concrete problems which appear in various fields of mathematics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Knowledge, understanding and use of fundamental concepts and results of complex analysis.		
7.2 Specific objective of the discipline	 Acquiring basic knowledge of complex analysis. Knowledge of fundamental topological notions in the complex plane. Understanding and studying fundamental results in the theory of holomorphic functions of one complex variable. Acquiring basic knowledge of various elementary functions in the complex plane. Understanding and studying fundamental results related to the complex integral. Ability to compute complex integrals. Advanced knowledge on Taylor and Laurent series expansions. Ability to compute various types of real integrals by using methods of complex analysis. Ability to use specific methods of complex analysis to study some problems from other fields of mathematics and physiscs. 		

8. Content

8.1 Course	Teaching methods	Remarks
1. Complex numbers. The complex plane. The stereographic projection. The extended complex plane.		
2. The derivative of complex functions of one complex variable. Paths in C . Fundamental	Lectures, modeling, didactical demonstration,	

	notions and results.	conversation.	
		Presentation of	
		alternative explanations.	
3.	The Cauchy-Riemann theorem. Holomorphic	Lectures, modeling,	
	functions. General properties. Applications.	didactical demonstration,	
		conversation.	
		Presentation of	
		alternative explanations.	
4.	Elementary functions. Harmonic functions.	Lectures, modeling,	
	Examples. Linear fractional transformations	didactical demonstration,	
	(Möbius transformations). General properties.	conversation.	
	Applications.	Presentation of	
	Applications.	alternative explanations.	
5.	Integration of complex functions. General	Lectures, modeling,	
	properties of the complex integral.	didactical demonstration,	
		conversation.	
		Presentation of	
		alternative explanations.	
6.	Primitives (anti-derivatives) of complex	Lectures, modeling,	
	functions of one complex variable.	didactical demonstration,	
	Fundamental results.	conversation.	
		Presentation of	
		alternative explanations.	
7.	Cauchy's theorem. Applications.	Lectures, modeling,	
		didactical demonstration,	
		conversation.	
		Presentation of	
		alternative explanations.	
8.	Cauchy's formulas. Cauchy's inequalities.	Lectures, modeling,	
	Morera's and Liouville's theorems.	didactical demonstration,	
	Applications.	conversation.	
		Presentation of	
0	Converses of holomorphic functions	alternative explanations.	
9.	Sequences of holomorphic functions.	Lectures, modeling,	
	Weierstrass' theorem. Series of holomorphic functions. Fundamental results.	didactical demonstration, conversation.	
	functions. Fundamental results.		
		Presentation of	
10	. Power series. The Cauchy-Hadamard	alternative explanations. Lectures, modeling,	
10	theorem. The equivalence between analyticity	didactical demonstration,	
	and holomorphy.	conversation.	
	una noromorphy.	Presentation of	
		alternative explanations.	
11	. Zeros of holomorphic functions. The identity	Lectures, modeling,	
	theorem of holomorphic functions. The	didactical demonstration,	
	maximum modulus theorem. Schwarz's	conversation.	
		Presentation of	
	lemma.	alternative explanations.	
12	. Laurent series. Singular points. Classification	Lectures, modeling,	
12	of isolated singularities. Meromorphic	didactical demonstration,	
	functions.	conversation.	
		Presentation of	
L			

	alternative explanations.
13. The residue theorem. Applications to calculus	Lectures, modeling,
of complex integrals.	didactical demonstration,
	conversation.
	Presentation of
	alternative explanations.
14. Applications of residue theorem to the	Lectures, modeling,
evaluation of real integrals.	didactical demonstration,
	conversation.
	Presentation of
	alternative explanations.

Bibliography

- 1. Hamburg, P., Mocanu, P.T., Negoescu, N., *Mathematical Analysis (Complex Functions)*, Editura Didactică și Pedagogică, București, 1982 (in Romanian).
- 2. Kohr, G., Complex Analysis, lecture notes (in Romanian), 2020.
- 3. Kohr, G., Mocanu, P.T., *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 4. Ahlfors, L.V., Complex Analysis, 3rd ed., McGraw-Hill Book Co., New York, 1979.
- 5. Bulboacă, T., Joshi, S.B., Goswami, P., *Complex Analysis. Theory and Applications*, de Gruyter, Berlin, Boston, 2019.
- 6. Conway, J.B., *Functions of One Complex Variable*, vol. I, Graduate Texts in Mathematics, Springer Verlag, New York, 1978 (Second Edition).
- 7. Gaşpar, D., Suciu, N., *Complex Analysis*, Publishing House of the Romanian Academy, Bucharest, 1999 (in Romanian).
- 8. Krantz, S., Handbook of Complex Variables, Birkhäuser Verlag, Boston, Basel, Berlin, 1999.
- 9. Narasimhan, R., Nievergelt, Y., Complex Analysis in One Variable, Second Edition, Birkhäuser, 1985.
- 10. Popa, E., Introduction in the Theory of Functions of One Complex Variable, A.I. Cuza Univ. Press, Iaşi, 2001 (in Romanian)
- 11. Rudin, W., Real and Complex Analysis, 3rd ed., Mc. Graw-Hill, 1987.
- 12. Stein, E.M., Shakarchi, R., Complex Analysis, Princeton University Press, 2003.
- 13. Zakeri, S., A Course in Complex Analysis, Princeton University Press, 2021.

8.2 Seminar	Teaching methods	Remarks
1. Properties of complex numbers. Applications.	Description of arguments and	
	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	
2. The stereographic projection. The extended	Description of arguments and	
complex plane. Sequences of complex	proofs for solving problems.	
numbers.	Direct answers to students.	
	Homework assignments.	
3. Complex functions of one complex variable.	Description of arguments and	
Examples and applications.	proofs for solving problems.	
	Direct answers to students.	
	Homework assignments.	

4. The derivative of functions of one complex	Description of arguments and
variable. Applications of the Cauchy-	proofs for solving problems.
Riemann theorem. The geometric	Direct answers to students.
interpretation of the complex derivative.	Homework assignments.
5. Linear fractional transformations (Möbius	Description of arguments and
transformations). Applications (I).	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
6. Linear fractional transformations (Möbius	Description of arguments and
transformations). Applications (II).	proofs for solving problems.
/ **	Direct answers to students.
	Homework assignments.
7. Entire functions. Harmonic functions. Examples	Description of arguments and
and applications.	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
8. The complex integral. Computation of	Description of arguments and
elementary complex integrals. Applications of	proofs for solving problems.
Cauchy's theorem.	Direct answers to students.
5	Homework assignments.
9. Cauchy's formulas. Applications.	Description of arguments and
5 11	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
10. Taylor series expansions.	Description of arguments and
5 1	proofs for solving problems.
	Direct answers to students.
	Homework assignments.
11. Applications of Liouville's and maximum	Description of arguments and
modulus theorems for holomorphic functions.	proofs for solving problems.
r	Direct answers to students.
	Homework assignments.
12. Laurent series expansions. Isolated singular	Description of arguments and
points. Examples and applications.	proofs for solving problems.
points. Examples and approactions.	Direct answers to students.
	Homework assignments.
13. Applications of Residue theorem to calculus	Description of arguments and
of complex integrals.	proofs for solving problems.
er compten meestado.	Direct answers to students.
	Homework assignments.
14. Applications of Residue theorem to calculus	Description of arguments and
of real integrals.	proofs for solving problems.
or rour modium.	Direct answers to students.
	Homework assignments.
Rihlingranhy	

Bibliography

- 1. Hamburg, P., Mocanu, P.T., Negoescu, N., *Mathematical Analysis (Complex Functions)*, Editura Didactică și Pedagogică, București, 1982 (in Romanian).
- 2. Kohr, G., Complex Analysis, seminar notes (in Romanian), 2020.
- 3. Kohr, G., Mocanu, P.T., *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).

- 4. Berenstein, C.A., Gay, R., Complex Variables: An Introduction, Springer-Verlag New York Inc., 1991.
- 5. Bulboacă, T., Joshi, S.B., Goswami, P., *Complex Analysis. Theory and Applications*, de Gruyter, Berlin, Boston, 2019.
- 6. Conway, J.B., *Functions of One Complex Variable*, vol. I, Graduate Texts in Mathematics, Springer Verlag, New York, 1978 (Second Edition).
- 7. Krzyz, J., Problems In Complex Variable Theory, American Elsevier Publishing Company, 1971.
- 8. Popa, E., Introduction in the Theory of Functions of One Complex Variable, A.I. Cuza Univ. Press, Iaşi, 2001 (in Romanian)
- 9. Volkovysky, L., Lunts, G., Aramanovich, I., *Problems in the Theory of Functions of a Complex Variable*, Moscow: MIR Publishers, 1972.
- 10. Evgrafov, M., Bejanov, K., Sidorov, Y., Fedoruk, M., Chabounine, M., Recueil de Problèmes sur la Théorie des Fonctions Analytiques, Moscou: Editions Mir, 1974.
- 11. Mocanu, G., Stoian, G., Vișinescu, E., Function Theory of One Complex Variable (Textbook of Problems), Editura Didactică și Pedagogică, București, 1970 (in Romanian).
- 12. Sălăgean, G.S., Geometria Planului Complex, Promedia-Plus, Cluj-Napoca, 1997.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this course is in accordance with the curricula of the most important universities in Romania and abroad. This discipline is useful in preparing future teachers and researchers in mathematics, as well as those who use various mathematical methods and techniques of study in other areas (physics, chemistry, engineering).

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results.	Written exam.	60%
	Ability to justify by proofs theoretical results.		
10.5 Seminar/lab activities	Ability to apply concepts and results acquired at the course in solving concrete problems of complex analysis.	Evaluation of student activity during the semester, and active participation in the seminar activity.	10%
		A midterm written test.	30%
	There are valid the official rules of the faculty concerning the attendance of students to teaching activities.		
10.6 Minimum per	formance standards		
The final gr	rade should be at least 5 (from a sca	le of 1 to 10).	_

10. Evaluation

11. Labels ODD (Sustainable Development Goals)²

	General label for Sustainable Development								
								9 NOUSTRY, INNOVATION AND NERASTRUCTURE	

Date: 11.04.2025 Signature of course coordinator

Lecturer PhD Mihai IANCU

Signature of seminar coordinator

Lecturer PhD Mihai IANCU

Date of approval: 25.04.2025

Signature of the head of department

Prof. dr. Andrei Mărcuș

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write "*Not applicable*.".