SYLLABUS

Algebra 2 (Basic algebraic structures)

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University	
1.2. Faculty	Mathematics and Computer Science	
1.3. Department	Mathematics	
1.4. Field of study	Mathematics	
1.5. Study cycle	Bachelor	
1.6. Study programme/Qualification	Mathematics Computer Science	
1.7. Form of education	Full-time education	

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Algebra 2	Algebra 2 (Basic Algebraic Structures)				Discipline code	MLE0021	
2.2. Course coordinator				Prof.	PhD). Septimi	u Crivei		
2.3. Seminar coordinator				Prof.	PhD). Septimi	u Crivei		
2.4. Year of study	1	2.5. Semester	2	2.6. Type of evaluation	on E	E	2.7. Disc	cipline regime	DF

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laborator	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					
Additional documentation (in libraries,	on electroi	nic platforms, field docu	mentatio	n)	20
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					
Evaluations					4
Other activities:					0
3.7. Total individual study hours94					
3.8. Total hours per semester 150					
3.9. Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential	C1.1 Identifying the notions, describing the theories and using the specific language
competencies	C2.3 Applying the adequate analytical theoretical methods to a given problem.
Transversal competencies	CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the scientific domain and teaching training for an optimal and creative development of the personal potential in specific situations, respecting the deontological norms.

6.2. Learning outcomes

Knowledge	The student is able to ensure the formation of skills specific to the Mathematics-related disciplines needed to complete the assignments. The student knows fundamental notions related to Algebra, and methods of applying them to areas of science related to Mathematics and Computer Science.
Skills	The student will construct clear and well-supported mathematical arguments to explain mathematical problems, topics, and ideas in writing. The student will prove theorems using the language of mathematics in theoretical junior/senior level courses and present those results both orally and in writing.
Responsibility and autonomy:	The student is able explore some mathematical content independently, drawing on ideas and tools from previous coursework to extend their understanding. The student will independently extend mathematical ideas and arguments from previous coursework to a mathematical topic not previously studied.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To introduce some basic notion and results regarding algebraic structures.
7.2 Specific objective of the discipline	To introduce some basics of group theory and ring theory.

8. Content

8.1 Course	Teaching methods	Remarks
1. Groups	Interactive exposure	
	Explanation	

	Conversation
	Didactical demonstration
2. Subgroups. Generated subgroup. Subgroup	Interactive exposure
lattice	Explanation
	Conversation
	Didactical demonstration
3. Group homomorphisms	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
4. Cyclic groups. Order of an element	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
5. Equivalence relations induced by a subgroup	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
6. Normal subgroups. Factor group	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
7. Isomorphism theorems for groups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
8. Permutation groups. Special groups	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
9. Rings and fields	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
10. Subrings and subfields	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
11. Ring homomorphisms	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
12. Ideals. Factor ring	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
13. Special rings	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
14. Rings of polynomials	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
Bibliography	

- 1. I.D. ION, N. RADU, Algebra (ed.4), Editura Didactica si Pedagogica, 1990.
- 2. S. CRIVEI, Basic Abstract Algebra, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2002, 2003.
- W.J. GILBERT, W.K. NICHOLSON, Modern Algebra with Applications, John Wiley, 2004.
 I. PURDEA, I. POP, Algebra, Editura GIL, Zalau, 2003.
- 5. J. ROTMAN, Advanced Modern Algebra, Prentice Hall, New Jersey, 2002.

8 2 Seminar / laboratory	Teaching methods	Remarks
1 Groups	Interactive exposure	
i. droups	Fynlanation	
	Conversation	
	Didactical demonstration	
2 Subgroups Generated subgroup Subgroup	Interactive exposure	
lattice	Explanation	
	Conversation	
	Didactical domonstration	
3 Group homomorphisms		
	Fynlanation	
	Conversation	
	Didactical demonstration	
4 Cyclic groups Order of an element	Interactive exposure	
i syche groups, order of un clement	Fynlanation	
	Conversation	
	Didactical demonstration	
5 Equivalence relations induced by a subgroup	Interactive exposure	
S. Equivalence relations induced by a subgroup	Fynlanation	
	Conversation	
	Didactical demonstration	
6 Normal subgroups Factor group	Interactive exposure	
o. Normal subgroups. Factor group	Explanation	
	Conversation	
	Didactical demonstration	
7 Isomorphism theorems for groups	Interactive exposure	
, isomorphism cheorems for groups	Fynlanation	
	Conversation	
	Didactical demonstration	
8 Permutation groups Special groups	Interactive exposure	
or remained groups opecial groups	Explanation	
	Conversation	
	Didactical demonstration	
9 Rings and fields	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
10 Subrings and subfields	Interactive exposure	
	Fynlanation	
	Conversation	
	Didactical demonstration	
11. Ring homomorphisms	Interactive exposure	
0	Explanation	
	Conversation	
	Didactical demonstration	
12. Ideals. Factor ring	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	

13. Special rings	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
14. Rings of polynomials	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration

Bibliography

- 1. G. CALUGAREANU, P. HAMBURG, Exercises in basic ring theory, Kluwer, Dordrecht, 1998.
- 2. I.D. ION, C. NITA, D. POPESCU, N. RADU, Probleme de algebra, Editura Didactica si Pedagogica, Bucuresti, 1981.
- 3. I. PURDEA, C. PELEA, Probleme de algebra, EIKON, Cluj-Napoca, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course presents notions which often appear in other undergraduate courses.

The course offers a sufficiently general background for some highschool algebra topics and the opportunity to develop some problem solving skills useful for further teaching activities.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade						
10.4 Course	Knowledge of concepts, results, examples	Midterm exam, final exam	1/3 of the grade						
	Problem solving	Midterm exam, final exam	2/3 of the grade						
10.5 Seminar/laboratory									
10.6 Minimum standard of performance									
The final grade must be at	least 5.								

11. Labels ODD (Sustainable Development Goals)²

General label for Sustainable Development									
							9 NOUSTRY, INNOVATION AND INFRASTRUCTURE		

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.

Date: 11.04.2025 Signature of course coordinator

Prof. PhD. Septimiu Crivei

Signature of seminar coordinator

Prof. PhD. Septimiu Crivei

Date of approval: 25.04.2025

Signature of the head of department

Prof. PhD. Andrei Mărcuș