SYLLABUS

Matematical Logic and Set Theory

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Mathematics Computer Science (English)
1.7. Form of education	Full-time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Matemati	Matematical Logic and Set Theory					Discipline code	MLE0070
2.2. Course coordinator				Prof. dr. Andrei Mărcuș					
2.3. Seminar coordinator				Prof. dr. Andrei Mărcuș					
2.4. Year of study	1	2.5. Semester	1	2.6. Type of evaluation	on	Е	2.7. Dis	cipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laborator	28
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support,	bibliograp	ohy, course notes (SA)			30
Additional documentation (in libraries,	on electroi	nic platforms, field docu	imentatio	n)	15
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					9
Evaluations					10
Other activities:					
3.7. Total individual study hours94					
3.8. Total hours per semester	er 150				
3.9. Number of ECTS credits	Number of ECTS credits 6				

4. Prerequisites (if necessary)

	Profound knowledge of high school math, especially of the following topics:
	 elements of propozitional and predicate calculus
	- operations with sets
4.1. curriculum	- functions;
	 injectivity, surjectivity, bijectivity
	- number sets
	- divizibility in Z; primes;

	- modular arthmetic
	- counting arguments
4.2. competencies	 ability to perform symbolic calculations ability to operate with abstract concepts ability to do logical deductions ability to ache methans based on equined notions
	 ability to solve math problems based on aquired notions

5. Conditions (if necessary)

5.1. for the course	blackboard, projector
5.2. for the seminar /lab activities	blackboard

6.1. Specific competencies acquired ¹

Professional/essential competencies	 C1.1 Identifying the notions, describing the theories and using the specific language. C2.3 Applying the adequate analytical theoretical methods to a given problem
Transversal competencies	 CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the scientific domain and teaching training for an optimal and creative development of the personal potential in specific situations, respecting the deontological norms.

6.2. Learning outcomes

Knowledge	The student: - has acquired the specific skills of mathematics-related disciplines necessary for completing assignments. - knows fundamental notions related to logic and set theory as well as methods of applying them in fields of science related to mathematics and computer science.
Skills	The student is able to: - construct clear and well-supported mathematical arguments to explain mathematical problems, topics and ideas in writing. - prove theorems using mathematical language in theoretical courses and will be able to present these results both orally and in writing.

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

nsibility itonomy:	The student has the ability to - independently explore certain mathematical contents, drawing on previously acquired ideas and tools, in order to extend his/her knowledge.
Respons and auto	- independently extend previously acquired mathematical ideas and arguments to a mathematical topic that has not been previously studied.

7. Objectives of the discipline (outcome of the acquired competencies) Г

7.1 General objective of the discipline	• Basic knowledge on First Order Logic, Set Theory, and Arithmetic. Ability to solve difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of logic, set theory and number theory students will aquire knowlegde first order predicates, relations, equivalence, cardinals and ordinals, number systems, divisibility, congruences, combinatorics. students solve problems, theoretical and practical, using instruments of modern mathematics.

8. Content

Veek 1. Propositional Logic. Formulas, truth ralues, tautologies. Veek 2. Normal forms in propositional logic.	Explanation, dialogue, examples, proofs	
	_	
Veek 2. Normal forms in propositional logic		
· · · · · · · · · · · · · · · · · · ·	Explanation, dialogue, examples, proofs	
First order Logic. Predicates, quantifiers.		
Veek 3. Methods of mathematical proof.	Explanation, dialogue, examples, proofs	
Sets and operations with sets.		
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue, examples, proofs	
urjective, bijective functions.		
Veek 5. Equivalence relations and partitions,	Explanation, dialogue, examples, proofs	
actor sets, kernel of a function.		
Veek 6. Factorization of functions	Explanation, dialogue, examples, proofs	
Veek 7. Ordered sets, lattices.	Explanation, dialogue, examples, proofs	
Veek 8. Boole algebras and Boole rings.	Explanation, dialogue, examples, proofs	
Veek 9. Axiomatic number theory. The Frege-	Explanation, dialogue, examples, proofs	
Russell constructions and the Peano axioms		
Veek 10. Construction of integers and	Explanation, dialogue, examples, proofs	
ationals.		
Veek 11. Cardinal numbers. Operations with	Explanation, dialogue, examples, proofs	
ardinal numbers.		
Veek 12. Ordering cardinal numbers. Finite,	Explanation, dialogue, examples, proofs	
ountable, infinite sets.		
Week 13. Elements of Combinatorics. Counting	Explanation, dialogue, examples, proofs	
irguments.		
Veek 14. Ordinal Numbers.	Explanation, dialogue, examples, proofs	

 Marcus, A.: Logică și teoria mulțimilor, Casa Cărții de Știință, Cluj-Napoca, 2022.
 Breaz, S.; Covaci, R.: Elemente de logica, teoria mulțimilor si aritmetica, Editura Fundației pentru Studii Europene, Cluj-Napoca, 2006.

8.2 Seminar / laboratory

Teaching methods

Remarks

Week 1. Propositional Logic. Formulas, truth	Explanation, dialogue, examples, proofs
values, tautologies.	
Week 2. Normal forms in propositional logic.	Explanation, dialogue, examples, proofs
First order Logic. Predicates, quantifiers.	
Week 3. Methods of mathematical proof.	Explanation, dialogue, examples, proofs
Sets and operations with sets.	
Week 4. Binary relations. Functions. Injective,	Explanation, dialogue, examples, proofs
surjective, bijective functions.	
Week 5. Equivalence relations and partitions,	Explanation, dialogue, examples, proofs
factor sets, kernel of a function.	
Week 6. Factorization of functions	Explanation, dialogue, examples, proofs
Week 7. Ordered sets, lattices.	Explanation, dialogue, examples, proofs
Week 8. Boole algebras and Boole rings.	Explanation, dialogue, examples, proofs
Week 9. Axiomatic number theory. The Frege-	Explanation, dialogue, examples, proofs
Russell constructions and the Peano axioms	
Week 10. Construction of integers and	Explanation, dialogue, examples, proofs
rationals.	
Week 11. Cardinal numbers. Operations with	Explanation, dialogue, examples, proofs
cardinal numbers.	r · · · · · · · · · · · · · · · · · · ·
Week 12. Ordering cardinal numbers. Finite,	Explanation, dialogue, examples, proofs
countable, infinite sets.	r · · · · · · · · · · · · · · · · · · ·
Week 13. Elements of Combinatorics. Counting	Explanation, dialogue, examples, proofs
arguments.	r · · · · · · · · · · · · · · · · · · ·
Week 14. Ordinal Numbers.	Explanation, dialogue, examples, proofs
Bibliography	

Bibliography

1. Adamson, I.: A Set Theory Workbook. Birkha" user, Boston, 1998.

2. Epp, S.: Discrete Mathematics with Applications. 4th ed. Brooks/Cole, Boston, 2011.

3. Levy, A.: Basic Set Theory. Dover Publications, New York, 1979.

4. Lidl, R., Pilz, G.: Applied Abstract Algebra. Springer-Verlag, Berlin, 1998.

5. Ross, K. A., Wright Ch., Discrete Mathematics. Pearson Education, New Jersey, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course (often called Discrete Mathematics) exists in the curricula of all major universities in Romania and • abroad.
- Mathematical Logic and Number Theory are fundamental topics and have multiple applications in other • branches of mathematics, as well as in Computer Science and in Philosophy.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade						
10.4 Course	 know the basic principles of the field. apply the new concepts.	- Written exam	80%						
10.5 Seminar/laboratory	Seminar/laboratory - problem solving		20%						
10.6 Minimum standard of performance									
• to aquire minimum 5 (out of 10) points to pass the exam									

11. Labels ODD (Sustainable Development Goals)²

	General label for Sustainable Development									
								9 NOUSTRY INNOVATION AND MERASTRUCTURE		

Date: 11.04.2025 Signature of course coordinator

Prof. dr. Andrei Mărcuș

Signature of seminar coordinator

Prof. dr. Andrei Mărcuș

Date of approval: 25.04.2025

Signature of the head of department

Prof. dr. Andrei Mărcuș

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.