SYLLABUS

Algebra 1 (Linear Algebra)

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Mathematics-Computer Science
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the discipline	е		Alge	bra 1 (Linear Alg	jebra	a)	Discipline code	MLE0019
2.2. Course coordinator				Assi	ist. I	Prof. PhD. Cosmin Pele	ea	
2.3. Seminar coordinator				Assi	ist. I	Prof. PhD. Cosmin Pele	ea	
2.4. Year of study	1	2.5. Semester	1	2.6. Type of evaluation		Ε	2.7. Discipline regime	compulsory

3. Total estimated time (hours/semester of didactic activities)

otal estimated time (nours/seme	otor or a				
3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laborator	28
Time allotment for individual study (ID) and self-study activities (SA)					hour s
Learning using manual, course su	upport, b	oibliography, course	notes (S	SA)	28
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					14
Evaluations					4
Other activities:					
3.7. Total individual study hours94					
3.8. Total hours per semester	- 100				
3.9. Number of ECTS credits6					

4. Prerequisites (if necessary)

4.1. curriculum	Basic notions and results from the 11th and 12th grades:
	determinants, proprerties;
	 rank, the inverse of a matrix;
	 sistem of linear equations;
	• group, ring, field.

	Basic computation skills.	
4.2. competencies	Managing abstract concepts and performing logical reasonings.	
	 The ability to use the knowledge aquired in problem solving.A 	

5. Conditions (if necessary

J. Cond	initions (in necessary					
5.1. for	the course	Blackboard, chalk, sponge				
5.2. for the seminar /lab activities		Blackboard, chalk, sponge				
6.1. Sp	5.1. Specific competencies acquired ¹					
Professional/essential competencies	0 0	notions, describing the theories and using the specific language equate analytical theoretical methods to a given problem.				
Transversal competencies	regarding the scienti	rules of precise and efficient work, showing a responsible attitude fic domain and teaching training for an optimal and creative ersonal potential in specific situations, respecting the deontological				

6.2. Learning outcomes

Knowledge	The student knows how to compute determinants, the rank and the inverse of a matrix, basics of linear systems, vector spaces, matrices and linear maps.
Skills	The student is able to construct clear and well-supported mathematical arguments to explain mathematical problems, topics, and ideas in writing, to explain theoretical notions, problem-solving methods using the appropriate mathemaical tools and can present these results both orally and in writing.
Responsibility and autonomy:	The student has the ability to work independently to explore some mathematical content, drawing on ideas and tools from previous coursework to extend their understanding and to extend mathematical ideas and arguments from previous coursework to a mathematical topic not previously studied.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline To introduce the basic notions of linear algebra.	
--	--

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

8.1 Course	Teaching methods	Remarks
1. Groups. Rings. Fields.	Interactive exposure; explanation;	
1. Groups. Milgs. Pielus.	conversation; didactical demonstration	
2. Polynomial rings. Matrix rings	Interactive exposure; explanation;	
2. Folynonnai ings. Mauix ings	conversation; didactical demonstration	
3. Determinants. The inverse of a	Interactive exposure; explanation;	
matrix	conversation; didactical demonstration	
4. The rank of a matrix.	Interactive exposure; explanation;	
4. The falls of a matrix.	conversation; didactical demonstration	
5. Systems of linear equations	Interactive exposure; explanation;	
5. Systems of infeat equations	conversation; didactical demonstration	
6. Elementary operations on a	Interactive exposure; explanation;	
matrix. Applications	conversation; didactical demonstration	
7. Vector spaces. Subspaces. The	Interactive exposure; explanation;	
generated subspace	conversation; didactical demonstration	
0.11	Interactive exposure; explanation;	
8. Linear maps	conversation; didactical demonstration	
9. Bases	Interactive exposure; explanation;	
9. Dases	conversation; didactical demonstration	
10. Dimension	Interactive exposure; explanation;	
10. Dimension	conversation; didactical demonstration	
11. Matrices and linear maps	Interactive exposure; explanation;	
11. Matrices and mear maps	conversation; didactical demonstration	
12. Eigenvectors and eigenvalues	Interactive exposure; explanation;	
5	conversation; didactical demonstration	
13. Diagonalisable matrices.	Interactive exposure; explanation;	
Hamilton-Cayley Theorem	conversation; didactical demonstration	
14. Bilinear and quadratic forms.	Interactive exposure; explanation; conversation; didactical demonstration	
	conversation; didactical demonstration	

Bibliography

1. R. COVACI, Algebra si programare liniara, Litografia UBB, Cluj-Napoca, 1986.

- 2. S. CRIVEI, Basic Abstract Algebra, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2002, 2003.
- 3. C. NASTASESCU, I. STANESCU, C. NITA, Matematica, Elemente de algebra superioara, Editura Didactica si Pedagogica, Bucuresti, 1995.
- 4. W. K. NICHOLSON, Linear Algebra and Applications, Lyryx Version,
- https://lila1.lyryx.com/textbooks/OPEN_LAWA_1/marketing/Nicholson-OpenLAWA-2021A.pdf 5. I. PURDEA, I. POP, Algebra, Editura GIL, Zalau, 2003.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Groups. Rings. Fields. Review.	Interactive exposure; explanation;	
1. Groups. Milys. Pielus. Review.	conversation; didactical demonstration	
2. Determinants.	Interactive exposure; explanation;	
	conversation; didactical demonstration	
3. The rank of a matrix	Interactive exposure; explanation;	
	conversation; didactical demonstration	
4. The inverse of a matrix	Interactive exposure; explanation;	
	conversation; didactical demonstration	
5. Systems of linear equations	Interactive exposure; explanation;	
5. Systems of miedi equations	conversation; didactical demonstration	
6. Vector spaces.	Interactive exposure; explanation;	

	conversation; didactical demonstration	
7. Subspaces. Generated subspace	Interactive exposure; explanation;	
	conversation; didactical demonstration	
8. Linear maps	Interactive exposure; explanation;	
o. Linear maps	conversation; didactical demonstration	
9. Bases	Interactive exposure; explanation;	
	conversation; didactical demonstration	
10. Dimension formulas.	Interactive exposure; explanation;	
	conversation; didactical demonstration	
11. Dimension and generated	Interactive exposure; explanation;	
subspaces.	conversation; didactical demonstration	
12. Matrices and linear maps	Interactive exposure; explanation;	
12. Matrices and mear maps	conversation; didactical demonstration	
13. Eigenvectors and eigenvalues.	Interactive exposure; explanation;	
Diagonalisable matrices. Hamilton-	conversation; didactical demonstration	
Cayley Theorem		
14. Bilinear and quadratic forms.	Interactive exposure; explanation;	
	conversation; didactical demonstration	

Bibliography

1. I.D. ION, N. RADU, Algebra (ed.4), Editura Didactica si Pedagogica, 1990.

2. I.D. ION, C. NITA, D. POPESCU, N. RADU: Probleme de algebra, Editura Didactica si Pedagogica, Bucuresti, 1981.

- 3. C. NASTASESCU, I. STANESCU, C. NITA, Matematica, Elemente de algebra superioara, Editura Didactica si Pedagogica, Bucuresti, 1995.
- 4. W. K. NICHOLSON, Linear Algebra and Applications, Lyryx Version,
- https://lila1.lyryx.com/textbooks/OPEN_LAWA_1/marketing/Nicholson-OpenLAWA-2021A.pdf

5. I. PURDEA, C. PELEA, Probleme de algebra, EIKON, Cluj-Napoca, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course presents notions which often appear in other undergraduate courses.
- The course offers a sufficiently general background for some highschool algebra topics and
- the opportunity to develop some problem solving skills useful for further teaching activities.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade		
10.4.0	Knowledge of basic concepts	Test	25%		
10.4 Course	Knowledge of basic results	Final exam.	25%		
10.5 Seminar/laboratory	Examples and problem solving	Final exam.	50%		
10.6 Minimum standard of performance					

- The final grade must be at least 5.
- The required background for receiving the degree 5 contains:
 - all the course notions;
 - the statements of all the results presented in the course;

- the possibility to compute (any size) determinants, the inverse of a matrix, the rank of a matrix using all the algorithms discussed during the semester;

- the possibility to discuss the consistency and to solve systems of linear equations using all the algorithms discussed during the semester.

General label for Sustainable Development							
							9 NOUSTRY, INNOVATION AND NERASTRUCTURE

11. Labels ODD (Sustainable Development Goals)²

Date: 11.04.2025

Signature of course coordinator Assist. Prof. PhD. Cosmin Pelea Signature of seminar coordinator Assist. Prof. PhD. Cosmin Pelea

Date of approval: 25.04.2025

Signature of the head of department Prof. PhD. Andrei Mărcuș

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the</u> <u>academic process</u>, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.