SYLLABUS

MULTI-VALUED ANALYSIS AND APPLICATIONS

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Master
1.6. Study programme/Qualification	Advanced Mathematics/Master
1.7. Form of education	with frecvency

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Multi-val ı	Multi-valued Analysis and Applications				Discipline cod	e M	IME3402
2.2. Course coordinator				Prof.dr. Adrian Petrusel					
2.3. Seminar coordinator				Prof.dr. Adrian Petrusel					
2.4. Year of study	2	2.5. Semester	3	2.6. Type of evaluatio		VP	2.7. Discipline regime	CO	ompulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4. Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar/laborator	14
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support,	bibliograp	ohy, course notes (SA)			32
Additional documentation (in libraries,	on electro	nic platforms, field docu	mentatio	on)	23
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					21
Evaluations					8
Other activities:					17
3.7. Total individual study hours					
3.8. Total hours per semester 175					
3.9. Number of ECTS credits 7					

4. Prerequisites (if necessary)

4.1. curriculum	Differential Equations, Mathematical Analysis (I-III), Topology, Nonlinear Applied Analysis	
4.2. competencies	 operation with abstract concepts the ability to make logical deductions the ability to solve mathematical problems based on the learned concepts 	

5. Conditions (if necessary)

5. Conditions (in necessary)					
5.1. for the course	Black board, Video projector				
5.2. for the seminar /lab activities	Black board, Video projector				

6.1. Specific competencies acquired ¹

Professional/essential Competencies

- Ability to understand and manipulate concepts, results and advanced mathematical theories.
- Ability to model and analyze from the mathematical point of view real processes from other sciences, economics, and engineering.
 - Ability to use the scientific language and to write scientific reports and papers.
 - Acquiring specific methods of multi-valued analysis theory (mainly related to nonlinear analysis) and its applications

Transversal competencies

- Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems.
 - Ability for continuous self-perfecting and study.
- Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics and Applied Mathematics.

6.2. Learning outcomes

Knowledge	The student knows: the basic concepts and results in multi-valued analysis (general properties, metrizability, various notions of continuity), as well as the metric and topological fixed point theory for multi-valued operators and its applications to differential and integral inclusions
Skills	The student is able to: - construct clear and well-supported mathematical arguments to explain mathematical problems, topics and ideas in writing demonstrate theorems using mathematical language in theoretical courses and will be able to present these results both orally and in writing.
Responsibility and autonomy:	The student has the ability to: - explore independently certain mathematical contents, relying on the ideas and tools already acquired, to expand their knowledge to work independently and to extend already acquired mathematical ideas and arguments to a mathematical topic that has not been previously studied.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 to present the basic concepts and results in multi-valued analysis and fixed point theory for multi-valued operators and its applications to differential and integral inclusions
7.2 Specific objective of the discipline	 To understand and use creatively: basic concepts and tools of metric spaces and Hausdorff-Pompeiu metric theory main concepts concerning multi-valued operator theory main concepts and results of metric fixed point theory, coincidence point theory and coupled fixed point theory for multi-valued operators applications of the fixed point theory for multi-valued operators to differential and integral inclusions

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

nethods Remarks
s: description,
n, class lectures,
ed lectures, lectures
nstrations,
ve lectures, synthesis
ons : debate, dialog,
ve conversations,
ons for knowledge
ion, conversations to
e and synthesize
2
plems : use of problem
problems and problem
before
1
before
before
before
belore
before
before
before
1 6 1 7 C i () 1 0 :: :: :: :: :: :: :: :: :: :: :: :: :

Bibliography

- 1. J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, Basel, 1990.
- 2. S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I and II, Kluwer Acad. Publ., Dordrecht, 1997 and
- 3. I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Presa Universitara Clujeana, 2008.
- 4. A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
- 5. A. Petruşel, Gh. Mot, G. Petruşel, Topics in Nonlinear Analysis and Applications to Mathematical Economics, House of the Book of Science, Cluj-Napoca, 2007.

8.2 Seminar / laboratory	Teaching methods	Remarks
Examples and exercises concerning gap	Conversations: debate, dialog,	
functional, excess functional, Pompeiu-	introductive conversations,	
Hausdorff functional, diameter functional	conversations for knowledge	
	consolidation, conversations to	
	systematize and synthesize	
	knowledge	

	Use of problems : use of problem questions, problems and problem situations	
Examples and exercises concerning Hausdorff- Pompeiu functional	the same as before	
Examples and exercises concerning Hausdorff- Pompeiu functional (II)	the same as before	
Examples and exercises concerning continuity notions for multi-valued operators	the same as before	
Examples and exercises concerning continuity notions for multi-valued operators	the same as before	
Examples and exercises concerning the multivalued contraction principle	the same as before	
Examples and exercises concerning generalizations of the multi-valued contraction principle	the same as before	
Examples and exercises concerning weakly Picard operators	the same as before	
Examples and exercises concerning coincidence point theorems	the same as before	
Examples and exercises concerning coupled fixed point theorems	the same as before	
Examples and exercises concerning applications of the fixed point theory for multivalued operators	the same as before	
Examples and exercises concerning applications of the fixed point theory for multivalued operators (II)	the same as before	

Bibliography

- 1. K. Deimling, Multivalued Differential Equations, W. de Gruyter, Basel, 1992.
- 2. L. Gorniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publ., Dordrecht, 1999.
- 3. A. Petruşel, Operatorial Inclusions, House of the Book of Science Cluj-Napoca, 2003
- 4. A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
- 5. I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Presa Universitara Clujeana, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The syllabus of this course is focused on the multivalued operator theory, as a basis for a good research activity through the Doctoral School in Mathematics.
- The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where multi-valued analysis plays an essential role. This discipline is useful in preparing future teachers and researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
10.4 Course	Knowledge of concepts and basic results	Middle term written test	40%	
	Ability to justify by proofs theoretical results	Final written test	40%	
10.5 Seminar/laboratory	Ability to apply concepts and results	Oral reports	10%	

		Ability to pr results in m analysis		Oral repor	rts	10%		
10.6 Minimu	m standard of	performance	:					
• Succe	essful passing o	of the exam is	s conditioned by t	he final gra	de that has to be at	least 5.		
	niversity officia arism are valid			ts attendand	ce of academic acti	vities, as	well as to che	eating and
l 1. Labels OI	DD (Sustainab	le Developm	nent Goals)²					
	General label	for Sustainal	ole Development					
								9 INDUSTRY, INNOVATION AND INFRASTRUCTURE
Date: 11.04.2025			nature of course c Prof.dr. Adrian P		_		seminar coord Adrian Petrus	

Signature of the head of department

Prof. dr. Andrei Mărcuș

Date of approval:

25.04.2025

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.