SYLLABUS

Integral Equations with Applications

University year 2025-2026

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme / Qualification	Advanced Mathematics
1.7 Form of education	Full-Time

2. Information regarding the discipline

2.1 Name of the dis	scipl	ine	Integral Equations with Applications		[Discipline code	MME3160
			(Ecuații integrale cu aplicații)				
2.2 Course coordinator Prof. Sanda Micula, PhD. Habil.							
2.3 Seminar coordinator			Prof. Sanda Micula, PhD. Habil.				
2.4. Year of study	2	2.5 Semester	3	2.6. Type of evaluation	E	2.7 Type of discipline	DS Optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1 sem
3.4 Total hours in the curriculum	Total hours in the curriculum 42 Of which: 3.5 course 28 3.6 seminar/laborat		3.6 seminar/laboratory	14	
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)					40
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					14
Evaluations					9
Other activities:					
3.7 Total individual study hours 133					
3.8 Total hours per semester 175					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Mathematical Analysis, Numerical Analysis
4.2. competencies	Knowledge of basic notions of operator theory
	Average programming skills

7

5. Conditions (if necessary)

5.1. for the course	•	Classroom with large blackboard and video projector
5.2. for the seminar /lab	•	Classroom with large blackboard and video projector/computers with
activities		Matlab

6. Specific competencies acquired

Professional	competencies	C4.1 Defining basic concepts, theory and mathematical modelsC4.2 Interpretation of mathematical modelsC4.3 Identifying the appropriate models and methods for solving real-life problemsC4.5 Embedding formal models in applications from various areas
Transversal	competencies	CT1 Application of efficient and organized work rules, of responsible attitudes towards the didactic- scientific domain, to creatively value one's own potential, with the respect towards the principles and norms of professional etic. CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities to value the knowledge, to adapt to requirements of a dynamic society and to communicate in Romanian language and in a language of international circulation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire knowledge of the general theory of integral equations, with focus on applications. Gain the ability to apply concepts and results from integral equations theory to specific problems.
7.2 Specific objective of the discipline	 Understand and be able to use main concepts and results from general integral equations theory. Be able to analyze the solvability of specific integral equations arising in applications. Understand, use and be able to derive numerical methods for the approximate solution of integral equations arising in applications from various fields.

8. Content

1. Introduction. Basic concepts. History of integral	 Interactive exposure Explanation 	
equations. Classifications and examples.	Conversation Description	
2. Types of integral equations with exact solutions.	 Interactive exposure Explanation Conversation Description 	
3. Relationship between initial value/boundary value problems and integral equations.	 Interactive exposure Explanation Conversation Description 	
4. Volterra integral equations . The method of successive approximations. Laplace transforms. Adomian decomposition.	 Interactive exposure Explanation Conversation Description 	
 5. Series solution. Volterra integral equations of the first kind. Integral equations of the convolution type. Abel integral equation. 6. Fredbolm integral equations. The method of 	 Interactive exposure Explanation Conversation Description 	

successive approximations, Neumann series. Adomian	Explanation	
decomposition. Compact integral operators.	Conversation	
Properties. The Fredholm alternative theorem.	Description	
7. Homogeneous Fredholm equations. Fredholm	 Interactive exposure 	
integral equations of the first kind.	Explanation	
	Conversation	
	Description	
8. Numerical methods. Degenerate kernel methods.	Interactive exposure	
Taylor series approximation. Interpolatory degenerate	Explanation	
kernel approximation.	Conversation	
	Description	
9. Projection methods, collocation and Galerkin	Interactive exposure	
methods. Iterated collocation and Galerkin methods.	Explanation	
Error analysis.	Conversation	
	Description	
10. Nyström methods. Product integration methods.	Interactive exposure	
Error analysis. Discrete collocation and discrete	Explanation	
Galerkin methods.	Conversation	
	Description	
11. Applications. Volterra's population model.	Interactive exposure	
Diffraction problems, Fresnel integrals.	Explanation	
	Conversation	
12 Angliastic as to astrophic the same The Theorem	Description	
12. Applications to potential theory. The Thomas-	Interactive exposure Suplanation	
Fermi equation.	Explanation	
	Conversation Description	
12 Applications to accord wayor Groop's function	Description	
13. Applications to ocean waves. Green's function	 Interactive exposure Explanation 	
method for waves. Seismic response of dams.		
14 Heat transfer and heat radiation		
1-. Heat transfer and heat radiation.	 Explanation 	
	Conversation	
	Description	
Bibliography	beschption	
1. M. Rahman. Integral Equations and their Applications.	WIT Press, Ashurst, Southampton, 2007.	
2. A. M. Wazwaz, Linear and Nonlinear Integral Equation	s, Methods and Applications. Higher Educa	ation Press,
Beijing. Springer, New York, 2011.		
3. K. E. Atkinson, The Numerical Solution of Integral Equa	ations of the Second Kind, Cambridge Unive	ersity Press,
Cambridge,1997.		

4. S. Micula, G. V. Milovanović, Chapter 16: Iterative Processes and Integral Equations of the Second Kind, Book: Matrix and Operator Equations and Applications, Birkhäuser, Springer Nature, Heidelberg, 2023.

5. A. D. Polyanin, A. V. Manzhirov, Handbook of Integral Equations, 2nd ed., CRC Press, Boca Raton, 2008.

6. S. Prössdorf, B. Silbermann, Numerical Analysis for Integral and Related Operator Equations, Wiley, Oxford, 1991.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Relationship between initial value/boundary value	 Interactive exposure 	The seminar is
problems and integral equations.	 Explanation 	structured as 2
	Conversation	hours per week,
	 Individual and group work 	every other week
2. Solvable integral equations.	 Interactive exposure 	
	 Explanation 	
	Conversation	

	 Individual and group work 	
3. Volterra integral equations. Abel's integral equation.	Interactive exposure	
	Explanation	
	Conversation	
	 Individual and group work 	
4. Fredholm integral equations. Mixed integral	Interactive exposure	
equations.	Explanation	
	Conversation	
	 Individual and group work 	
5. Interpolation-based collocation and Galerkin	Interactive exposure	
methods. Iterated solutions.	Explanation	
	Conversation	
	 Individual and group work 	
6. Nyström methods. Product integration. Discrete	 Interactive exposure 	
projection methods.	 Explanation 	
	Conversation	
	 Individual and group work 	
7. Various applications.	 Interactive exposure 	
	Explanation	
	Conversation	
	 Individual and group work 	

Bibliography

1. M. Rahman, Integral Equations and their Applications, WIT Press, Ashurst, Southampton, 2007.

2. A. M. Wazwaz, Linear and Nonlinear Integral Equations, Methods and Applications. Higher Education Press, Beijing. Springer, New York, 2011.

3. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.

4. S. Micula, G. V. Milovanović, Chapter 16: Iterative Processes and Integral Equations of the Second Kind, Book: Matrix and Operator Equations and Applications, Birkhäuser, Springer Nature, Heidelberg, 2023.

5. A. D. Polyanin, A. V. Manzhirov, Handbook of Integral Equations, 2nd ed., CRC Press, Boca Raton, 2008.

6. S. Prössdorf, B. Silbermann, Numerical Analysis for Integral and Related Operator Equations, Wiley, Oxford, 1991.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Courses with similar content exist in the studying program of major universities in Romania and abroad, for Mathematics and Applied Mathematics students at the Master's level;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The analysis and modeling abilities acquired in this course are useful in any career path students may choose.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles and notions in Integral Equations theory apply correctly various course concepts and methods 	Written exam	70%
10.5 Seminar/lab activities	 understand and be able to use theory and results in problems and applications apply numerical procedures and algorithms to solve practical and 	 active participation in discussing and solving problems throughout the semester individual presentation 	30%

10. Evaluation

	real-life problems	of solutions			
10.6 Minimum performance standards					
A grade of 5 or above (on a scale from 1 to 10) on each of the activities mentioned above (written exam, seminar					

11. Labels ODD (Sustainable Development Goals)¹

evaluation)

General label for Sustainable Development						
						9 ADDISTRY, INNOVATION AND MERASTRUCTURE

Date	Signature of course coordinator	Signature of seminar coordinator
29.04.2025	Prof. Sanda Micula, PhD. Habil.	Prof. Sanda Micula, PhD. Habil.

Date of approval

Signature of the head of department

Prof. dr. Andrei Mărcuş

¹ Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable.*".