SYLLABUS

Applied Functional Analysis

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University	
1.2. Faculty	Mathematics and Computer Science	
1.3. Department	Mathematics	
1.4. Field of study	Mathematics	
1.5. Study cycle	Master	
1.6. Study programme/Qualification	Advanced Mathematics	
1.7. Form of education	Attendance	

2. Information regarding the discipline

2.1. Name of the dis	cipline	Applied Fu	Applied Functional Analysis				Discipline code	MME3005	
2.2. Course coordinator Assoc Prof. PHD Brigitte Breckner				Ma	aster				
2.3. Seminar coordinator Assoc. Prof. PHD Brigitte Breckner				Ac	lvance	d Mathe	matics		
2.4. Year of study	1 2	.5. Semester	2	2.6. Type of evaluation		Е	2.7. Dis	cipline regime	elective

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4. Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar/laborator	14
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support,	bibliograp	ohy, course notes (SA)			32
Additional documentation (in libraries, o	on electro	nic platforms, field docu	imentati	on)	23
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					
3.7. Total individual study hours133					
3.8. Total hours per semester175					
3.9. Number of ECTS credits 7					

4. Prerequisites (if necessary)

4.1. curriculum	linear algebra; general topology; mathematical analysis; the attendance of the functional analysis course from the bachelor level is NOT necessary
4.2. competencies	abstract and logical thinking

5. Conditions (if necessary)

5.1. for the course	blackboard, chalk, video projector		
5.2. for the seminar /lab activities	blackboard, chalk		

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	C1.1 To identify the appropriate notions, to describe the speficic topic and to use an appropriate language. C1.3 To apply correctly basic methods and principles in order to solve mathematical problems.
Transversal competencies	CT1 To apply efficient and rigorous working rules, to manifest responsible attitudes towards the scientific and didactic fields, respecting the professional and ethical principles.

6.2. Learning outcomes

Knowledge	The student - has acquired the mathematics discipline-specific skills needed to complete homework, - knows fundamental concepts related to functional analysis as well as methods of applying them in areas of science related to mathematics and computer science.
Skills	The student is able to: - construct clear and well-supported mathematical arguments to explain mathematical problems, topics and ideas in writing, - prove theorems using mathematical language in theoretical courses and will be able to present these results both orally and in writing.
Responsibility and autonomy:	The student has the ability to work independently to obtain: - independently explore some mathematical content, building on ideas and tools already learned to extend their knowledge, - independently extend mathematical ideas and arguments already learned to a mathematical topic not previously studied.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Presentation of the spectral theory of operators on Banach spaces, resp., on Hilbert spaces Presentation of various applications of the spectral theory of operators
7.2 Specific objective of the discipline	 Acquirement of knowledge specific to higher functional analysis To become familiar with the abstract thinking and the problematization specific to functional analysis

8. Content

8.1 Course	Teaching methods	Remarks
1. Normed spaces (definition; properties;	Lecture with mathematical	
Banach spaces; inner product spaces; Hilbert	proofs, problematization,	
spaces; examples)	discussion	

2. Linear continuous operators between	Lecture with mathematical
normed spaces (characterizations of the	proofs, problematization,
continuity of linear operators between normed	discussion
spaces; the normed space of linear continuous	
operators between normed spaces)	
3. Linear continuous operators between	Lecture with mathematical
normed spaces (the open mapping theorem;	proofs, problematization,
the bounded inverse theorem; the closed graph	discussion
theorem)	
4. Linear continuous functionals on normed	Lecture with mathematical
spaces (characterizations of the continuity of	proofs, problematization,
linear functionals; the dual of a normed space;	discussion
the dual of a Hilbert space). Reflexive normed	
spaces	
5. Spectral theory of operators on Banach	Lecture with mathematical
spaces (closed operators; the resolvent set, the	proofs, problematization,
resolvent, the spectrum, the point spectrum,	discussion
the approximative point spectrum, the	
continuous spectrum, and the residual	
spectrum of an operator)	
6. Spectral theory of operators on Banach	Lecture with mathematical
spaces (the adjoint of a vector subspace of the	proofs, problematization,
product of two normed spaces; the adjoint of a	discussion
linear densely defined operator)	
7. Spectral theory of operators on Banach	Lecture with mathematical
spaces (relationships between a linear densely	proofs, problematization,
defined operator and its adjoint; properties of	discussion
the resolvent set and of the spectrum of adjoint	
operators) 8. Spectral theory of operators on Banach	Lecture with mathematical
spaces (compact operators; characterizations	proofs, problematization,
and properties of compact operators)	discussion
9. Spectral theory of operators on Banach	Lecture with mathematical
spaces (the Riesz-Schauder theorem for	proofs, problematization,
compact operators; the spectral theorem for	discussion
compact operators)	
10. Spectral theory of operators on Hilbert	Lecture with mathematical
spaces (the adjoint operator of a linear	proofs, problematization,
continuous operator between Hilbert spaces;	discussion
properties of the adjoint operator; unitary,	
selfadjoint, normal, and symmetric operators)	
11. Spectral theory of operators on Hilbert	Lecture with mathematical
spaces (the Hellinger-Toeplitz theorem;	proofs, problematization,
spectral properties of normal operators;	discussion
spectral properties of selfadjoint operators)	
12. Spectral theory of operators on Hilbert	Lecture with mathematical
spaces (the spectral theorem for compact,	proofs, problematization,
selfadjoint operators; the spectral theorem for	discussion
compact, normal operators)	
13. Banach algebras (definition; the resolvent	Lecture with mathematical
set, the spectrum, and the resolvent of an	proofs, problematization,
element; properties of the resolvent; ideals and	discussion
maximal ideals in Banach algebras; characters)	
14. Banach algebras (the Gelfand space of a	Lecture with mathematical
Banach algebra; the theorem of Gelfand-Mazur;	proofs, problematization,
the Gelfand transform)	discussion
Bibliography	
1. BRECKNER W. W.: Analiză funcțională, Presa U	niversitară Cluieană, Clui-Napoca, 2009.

1. BRECKNER W. W.: Analiză funcțională, Presa Universitară Clujeană, Cluj-Napoca, 2009.

2. BREZIS H.: Analiză funcțională. Teorie și aplicații, Ed. Academiei Române, București, 2002.

3. DUNFORD N. and SCHWARTZ J. T.: Linear Operators. Part 1: General theory, Interscience Publishers, New York, 1958.

4. DUNFORD N. and SCHWARTZ J. T.: Linear Operators. Part 2: Spectral theory, Interscience Publishers, New York, 1963.

5. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage, B. G. Teubner, Stuttgart, 1992.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. From the oscillating swing to Fourier series	Problematization, discussion, team work	
2. Examples of operators (integral, differentiation, interpolation, approximation, from quantum mechanics)	Problematization, discussion, team work	
3. Applications of the results presented in the third lecture (initial value problems for linear differential equations; approximate solutions of operator equations)	Problematization, discussion, team work	
4. Examples/Counterexamples for reflexive normed spaces	Problematization, discussion, team work	
5. The spectral radius of an operator. Determination of the resolvent set, the spectrum, the point spectrum, the approximative point spectrum, the continuous spectrum, and the residual spectrum of concrete operators	Problematization, discussion, team work	
5. Determination of the resolvent set, the spectrum, the point spectrum, the approximative point spectrum, the continuous spectrum, and the residual spectrum of concrete operators	Problematization, discussion, team work	
7. A characterization of adjoint operators. Examples	Problematization, discussion, team work	
3. Examples of compact operators	Problematization, discussion, team work	
 Applications of the spectral theorem for compact operators (the Sturm-Liouville eigenvalue problem) 	Problematization, discussion, team work	
10. Unitary, selfadjoint, normal, and symmetric operators on Hilbert spaces (examples; properties)	Problematization, discussion, team work	
1. Unitary, selfadjoint, normal, and symmetric perators on Hilbert spaces (examples; properties)	Problematization, discussion, team work	
2. Applications of the spectral theorems presented in the lecture (the square root of a positive operator)	Problematization, discussion, team work	
13. Banach algebras (examples)	Problematization, discussion, team work	
14. Banach algebras (the Gelfand space of concrete Banach algebras)	Problematization, discussion, team work	

1 • 17• TT · 1 11

1. BREZIS H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.

2. HEUSER H.: Funktionalanalysis. Theorie und Anwendung, 3. Auflage. B. G. Teubner, Stuttgart, 1992.

3. WERNER D.: Funktionalanalysis. Vierte, überarbeitete Auflage, Springer-Verlag, Berlin - Heidelberg - New York, 2002 .

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Functional analysis is one of the most important branches of mathematics, having applications in various domains (numerical analysis, approximation theory, optimization, PDEs, probability theory, mathematical and theoretical physics). This discipline both provides the theoretical background for such applications and gives samples of them.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Knowledge of concepts and basic results	Midterm written test	45%
	Ability to perform proofs	Final written test	45%
	Ability to apply concepts and results acquired in the lecture	Own contributions to the exercise classes	10%
10.5 Seminar/laboratory	There are valid the official rules of the faculty concerning the attendance of students to teaching activities.		
10.6 Minimum standard of			
	n the topics from the lectures a	and seminars	

11. Labels ODD (Sustainable Development Goals)²

General label for Sustainable Development							
							9 AND NERASTRUCTURE

Date: 11.04.2025

Signature of course coordinator

Signature of seminar coordinator

Assoc. Prof. PHD Brigitte Breckner

Assoc. Prof. PHD Brigitte Breckner

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.

Date of approval: 25.04.2025

Signature of the head of department

Prof. dr. Andrei Mărcuș