SYLLABUS

Qualitative theory of ordinary differential equations

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Mathematics
1.5. Study cycle	Master
1.6. Study programme/Qualification	Advanced Mathematics
1.7. Form of education	Full Attendance

2. Information regarding the discipline

2.1. Name of the disc	cipli	Qualitati ne	Qualitative theory of ordinary differential equations				Discipline code	MME3109	
2.2. Course coordinator				Conf. Dr. Adriana Buică					
2.3. Seminar coordinator			Conf. Dr. Adriana Buică						
2.4. Year of study	1	2.5. Semester	mester 1 2.6. Type of evaluation			Ε	2.7. Discip	line regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory	1	
3.4. Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar/laborator	14	
Time allotment for individual study (ID) and self-study activities (SA)						
Learning using manual, course support,	bibliograp	hy, course notes (SA)			47	
Additional documentation (in libraries, o	on electroi	nic platforms, field docu	imentatio	n)	30	
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						
3.7. Total individual study hours 133						
3.8. Total hours per semester 175						
3.9. Number of ECTS credits 7						

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis; Differential Equations	
4.2. competencies	Logical thinking, as well mathematical notions and properties from the above mentioned fields	

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard
5.2. for the seminar /lab activities	Classroom with blackboard

6. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics.
Transversal competencies	 Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems. Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To present the fundamental results and methods for the study of the qualitative behaviour of the solutions of linear and nonlinear differential equations.
7.2 Specific objective of the discipline	 Full understanding of the dynamic of linear autonomous systems. Understand the fundamental results for nonlinear systems Ability to study the stability of equilibrium and periodic solutions for nonlinear systems.

8. Content

8.1 Course	Teaching methods	Remarks
1.Linear differential systems. Fundamental theory.	Exposition, proofs, examples	
2.Linear differential systems with constant coefficients. The exponential matrix for a diagonalizable matrix.	Exposition, proofs, examples	
3.Linear differential systems with constant coefficients. The exponential matrix for a deffective matrix.	Exposition, proofs, examples	
4.The asymptotic behaviour of the solutions of linear systems with constant coefficients. Stable, unstable, center manifolds.	Exposition, proofs, examples	
5.The fundamental theorems for nonlinear systems: the existence and uniqueness theorem	Exposition, proofs, examples	
6.The fundamental theorems for nonlinear systems: maximal interval of existence	Exposition, proofs, examples	
7.The fundamental theorems for nonlinear systems: continuity and differentiability with respect to parameters and initial data	Exposition, proofs, examples	
8.Stability of equilibria of nonlinear autonomous systems by linearization.	Exposition, proofs, examples	
9.Stability of equilibria of nonlinear autonomous systems by the Lyapunov functions method	Exposition, proofs, examples	
10.Stability of nonautonomous linear differential systems	Exposition, proofs, examples	
11.Stability of periodic linear differential systems. Floquet theory I	Exposition, proofs, examples	

12.Stability of periodic linear differential systems. Floquet theory II	Exposition, proofs, examples	
13.Periodic solutions of linear periodic systems	Exposition, proofs, examples	
14.Stability of periodic solutions of periodic nonlinear systems	Exposition, proofs, examples	

Bibliography

- 1. A. Buică, Periodic solutions for nonlinear systems, Cluj University Press, 2006.
- 2. A. Buică, Lecture Notes on Qualitative theory of differential equations uploaded in Teams.
- 3. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 4. E.A. Coddington, N. Levinson, Theory of ordinary differential equations, 1959.
- 5. P. Hartman, Ordinary differential equations, SIAM, 2002.
- 6. L. Perko, Differential equations and dynamical systems, Springer, 2001.
- 7. M. Viana, J.M Espinar, Differential equations: a dynamical systems approach to theory and practice, American Mathematical Society, 2021.

8.2 Seminar	Teaching methods	Remarks
1.Exercises and problems related to the fundamental	Examples, dialogue, explanations,	
theorems for linear differential systems.	proofs, critical thinking	
2.Exercises to recognize a diagonalizable matrix over R		
or over C, the computation of their exponential and the	Examples, dialogue, explanations,	
general solution of the corresponding linear differential	critical thinking	
system.		
3Exercises to recognize a deffective matrix, the	Examples dialogue explanations	
computation of their exponential and the general	proofs critical thinking	
solution of the corresponding linear differential system.	proofs, critical tilliking	
4 Stable unstable and center manifolds on examples	Examples, dialogue, explanations,	
+.stable, unstable and center mannolus on examples.	critical thinking	
5.The existence and uniqueness theorem on examples	Examples, dialogue, explanations,	
and its important consequences.	proofs, critical thinking	
6.The maximal interval of existence for the solutions of	Examples, dialogue, explanations,	
various equations, including the pendulum equation.	critical thinking	
7.Continuity and differentiability with respect to the	Examples, dialogue, explanations,	
initial data and parameters on examples.	proofs, critical thinking	
8.The stability by linearization of the equilibria of various	Examples, dialogue, explanations,	
differential autonomous systems.	critical thinking	
9. The stability by the direct method of Lyapunov of the	Examples, dialogue, explanations,	
equilibria of various differential autonomous systems.	proofs, critical thinking	
10.The stability of linear nonautononous systems.	Examples, dialogue, explanations,	
Exrcises to understand how to apply the main results.	critical thinking	
11 Applications of the Floquet theory	Examples, dialogue, explanations,	
	proofs, critical thinking	
12.The stability of some periodic linear differential	Examples, dialogue, explanations,	
equations, including the Hill equation.	critical thinking	
13.The existence of periodic solutions of some periodic	Examples, dialogue, explanations,	
differential equations, including the Hill equation.	proofs, critical thinking	
14.Discussion on the stability of periodic solutions of	Examples, dialogue, explanations,	
autonomous systems.	proofs, critical thinking	
Bibliography		

1. A. Buică, Periodic solutions for nonlinear systems, Cluj University Press, 2006.

- 2. A. Buică, Lecture Notes on Qualitative theory of differential equations uploaded in Teams.
- 3. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 4. E.A. Coddington, N. Levinson, Theory of ordinary differential equations, 1959.
- 5. P. Hartman, Ordinary differential equations, SIAM, 2002.
- 6. L. Perko, Differential equations and dynamical systems, Springer, 2001.
- 7. M. Viana, J.M Espinar, Differential equations: a dynamical systems approach to theory and practice, American Mathematical Society, 2021.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is synchronized with the curriculum of most of the important universities from our country and from abroad where the applied mathematics plays an important role.
- The content is a strong background for further doctoral studies.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade			
10.4 Course	Knowledge of the notions and their properties by examples or counterexamples. Ability to prove the main theoretical results.	Written exam	50%			
	Development of a specific subject by reading the bibliography.	Report with oral presentation	20%			
	Solving problems skills	Evaluation of the homeworks	30%			
10.5 Seminar/laboratory	Active participation in the classroom					
10.6 Minimum standard of performance						
The minimum passing grade is 5.						

11. Labels ODD (Sustainable Development Goals)²

Date of approval: 25.04.2025

Signature of the head of department

Prof. dr. Andrei Mărcuș

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.