
SYLLABUS	

Software	Design	

University	year	2025	-	2026	

	

1.	Information	regarding	the	programme	
1.1.	Higher	education	institution	 Babeş-Bolyai	University	of	Cluj-Napoca	
1.2.	Faculty	 Faculty	of	Mathematics	and	Computer	Science	
1.3.	Department	 Department	of	Computer	Science	
1.4.	Field	of	study	 Computer	Science	
1.5.	Study	cycle	 Master	
1.6.	Study	programme/Qualification	 Software	Engineering	
1.7.	Form	of	education	 Full	time	

	
2.	Information	regarding	the	discipline	
2.1.	Name	of	the	discipline	 Software	Design	 Discipline	code	 MME8065	
2.2.	Course	coordinator	 Assoc.	Prof.	PhD.	Molnar	Arthur-Jozsef	
2.3.	Seminar	coordinator	 Assoc.	Prof.	PhD.	Molnar	Arthur-Jozsef	
2.4.	Year	of	study	 1	 2.5.	Semester	 2	 2.6.	Type	of	evaluation	 E	 2.7.	Discipline	regime	 Elective	

	
3.	Total	estimated	time	(hours/semester	of	didactic	activities)	

	
4.	Prerequisites	(if	necessary)	
4.1.	curriculum	 -	

4.2.	competencies	
Programming	skills	in	at	least	one	language	that	supports	the	object-oriented	paradigm;	
knowledge	and	competences	regarding	the	important	phases	of	the	software	development	
lifecycle.	

	
5.	Conditions	(if	necessary)	
5.1.	for	the	course	 Classroom	with	video-projector	and	Internet	access.	
5.2.	for	the	seminar	/lab	activities	 Classroom	with	video-projector	and	Internet	access.	
	
	
	

3.1.		Hours	per	week			 3	 of	which:	3.2	course	 2	 3.3	
seminar/laboratory/project	 1	

3.4.		Total	hours	in	the	curriculum	 42	 of	which:	3.5	course			 28	 3.6		
seminar/laboratory/project	 14	

Time	allotment	for	individual	study	(ID)	and	self-study	activities	(SA)	 hours	
Learning	using	manual,	course	support,	bibliography,	course	notes	(SA)	 30	
Additional	documentation	(in	libraries,	on	electronic	platforms,	]ield	documentation)	 40	
Preparation	for	seminars/labs,	homework,	papers,	portfolios	and	essays	 40	
Tutorship		 10	
Evaluations	 10	
Other	activities:		 3	
3.7.		Total	individual	study	hours	 133	
3.8.		Total	hours	per	semester	 175	
3.9.		Number	of	ECTS	credits	 7	



6.1.	SpeciOic	competencies	acquired	1	
Pr
of
es
si
on
al
/e
ss
en
ti
al
	

co
m
pe
te
nc
ie
s	

• Analysis,	design,	and	implementation	of	software	systems	
• Pro]icient	use	of	methodologies	and	tools	speci]ic	to	programming	languages	and	software	systems	

Tr
an
sv
er
sa
l	

co
m
pe
te
nc
ie
s 	

• Teamwork	capabilities;	able	to	ful]il	different	roles	
• Professional	communication	skills;	concise	and	precise	description,	both	oral	and	written,	of	professional	

results,	negotiation	abilities	

	

6.2.	Learning	outcomes	

K
no
w
le
dg
e	

• The	graduate	has	the	necessary	knowledge	to	devise,	model	and	design	complex	software	applications	
• The	graduate	possesses	the	fundamental	knowledge	for	modelling,	being	able	to	analyse	real	life	problems	

and	translate	them	in	concrete	requirements	and	design	a	corresponding	software	model	

Sk
ill
s 	 • The	graduate	has	the	ability	to	follow	the	entire	life	cycle	of	software	system	development	

• The	graduate	can	use	speci]ic	language	and	terminology	for	software	engineering	and	is	able	to	
communicate	and	interact	with	members	of	a	team	

	

Re
sp
on
si
bi
lit
y 	

an
d	
au
to
no
m
y:
	

• The	graduate	is	able	to	carry	out	activities	for	education	and	training	on	different	topics	related	to	
software	development	

• The	graduate	can	apply	advanced	information	system	knowledge	starting	from	a	high	level	of	abstraction	
and	is	able	to	offer	implementation	solutions	for	complex	software	systems	

	
7.	Objectives	of	the	discipline	(outcome	of	the	acquired	competencies)	

7.1	General	objective	of	the	
discipline	

Gain	knowledge	and	competences	with	real-world	applicability	regarding	the	design,	
development	and	maintenance	of	modern,	complex	software	systems.	

7.2	SpeciOic	objective	of	the	
discipline	

• Know	and	understand	the	fundamental	concepts	of	software	design.	
• Know	the	most	common	software	system	types	and	the	recommended	

architectural	styles	and	design	patterns	employed	in	their	development.	
• Have	knowledge	of	and	be	able	to	apply	the	appropriate	architectural	and	design	

patterns	to	different	programming	projects.	
	
	
	
	
	
	
	

 
1	One	can	choose	either	competences	or	learning	outcomes,	or	both.	If	only	one	option	is	chosen,	the	row	related	
to	the	other	option	will	be	deleted,	and	the	kept	one	will	be	numbered	6.	



8.	Content	
8.1	Course	 Teaching	methods	
Introduction	
The	Software	Development	Lifecycle	and	the	Software	Process;	Practical	
example	–	challenges	in	scaling	an	application	from	1	to	1	million	users	

• Interactive	exposure	
• Explanation	
• Conversation	
• Examples	
• Didactical	demonstration	

Challenges	in	software	development	
Requirements	volatility,	process,	technology,	ethical	and	professional	practices,	
managing	design	influences.	Practical	examples	from	major	companies	and	
platforms	
The	software	development	lifecycle	
Requirements,	software	architecture,	detailed	design,	construction	design,	
human-computer	interface	design,	software	design	documentation	and	
management.	
Patterns	and	styles	in	software	architecture	
Layered,	client-server,	peer-to-peer,	MVC,	broker,	blackboard,	master-slave,	
service-oriented	architecture,	microservices,	blockchain	and	smart	contracts.	
Establishing	system	architecture	
Establishing	the	technology	stack	
Presentation	of	case	study	systems	
Large-scale	system	architecture	such	as	those	for	media	streaming,	social	
media,	document	and	e-mail	management.		
Construction	and	detailed	design	
SOLID	principles,	component	design	principles,	design	patterns.	
Software	security	
Discussion	and	presentation	of	hardware	and	software	vulnerabilities	in	real-
life	systems,	introduction	to	security	and	privacy	risk	analysis,	threat	
modelling,	the	MITRE	ATT&CK	database,	the	Common	Vulnerabilities	and	
Exposures	database.	
Software	quality	and	maintenance	
Software	quality	standards	and	tools,	antipatterns,	code	smells,	technical	debt	
and	refactoring.	
Bibliography	
1. E.	Gamma,	R.	Helm,	R.Johnson,	J.	Vlissides	–	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	

Addison	Wesley,	1995.	
2. Eric	Freeman,	Elisabeth	Robson,	Bert	Bates,	Kathy	Sierra	-	Head	First	Design	Patterns,	O'Reilly	Media,	2004.	
3. William	J.	Brown,	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick,	Thomas	J.	Mowbray	-	AntiPatterns:	Refactoring	

Software,	Architectures,	and	Projects	in	Crisis,	Wiley,	1998.	
4. Hohpe	Gregor,	Woolf	Bobby		-	Enterprise	Integration	Patterns,	Addison-Wesley,	2003	(some	resources	at	

https://www.enterpriseintegrationpatterns.com/).	
5. Martin	Fowler	-	Refactoring.	Improving	the	Design	of	Existing	Code.	Addison-Wesley,	1999.	
6. Carlos	Otero	-	Software	Engineering	Design	-	Theory	and	Practice,	CRC	Press,	Taylor	&	Francis	Group,	2012.	
7. Alex	Xu	–	System	Design	Interview	–	An	Insider’s	Guide	(Volumes	I	and	II),	ByteByteGo,	2020.	
8. Martin	Kleppmann	-	Designing	Data-Intensive	Applications:	The	Big	Ideas	Behind	Reliable,	Scalable,	and	

Maintainable	Systems,	O’Reilly	Media,	2017.	
9. Robert	C.	Martin	-	Clean	Architecture:	A	Craftsman's	Guide	to	Software	Structure	and	Design,	Pearson,	2017.	
8.2	Seminar	/	laboratory	 Teaching	methods	
Introduction	to	course;	presentation	of	evaluation	method	and	semester	
projects.	

• Interactive	exposure	
• Explanation	
• Conversation	
• Examples	
• Didactical	demonstration	

Initial	discussion	of	the	seminar	project	and	the	architecture	documentation.	
Work	on	seminar	project	and	architecture	documentation.	Student	
presentations.	
Presentation	of	the	software	design	process	in	real-life	applications.	Student	
presentations.	
Evaluation	of	the	]irst	phase	of	the	seminar	project.	
Work	on	seminar	project	and	architecture	documentation.	Student	
presentations.	
Evaluation	of	the	]inal	phase	of	the	seminar	project.		
Bibliography	
1. E.	Gamma,	R.	Helm,	R.Johnson,	J.	Vlissides	–	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	

https://www.enterpriseintegrationpatterns.com/


Addison	Wesley,	1995.	
2. Eric	Freeman,	Elisabeth	Robson,	Bert	Bates,	Kathy	Sierra	-	Head	First	Design	Patterns,	O'Reilly	Media,	2004.	
3. William	J.	Brown,	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick,	Thomas	J.	Mowbray	-	AntiPatterns:	Refactoring	

Software,	Architectures,	and	Projects	in	Crisis,	Wiley,	1998.	
4. Hohpe	Gregor,	Woolf	Bobby		-	Enterprise	Integration	Patterns,	Addison-Wesley,	2003	(some	resources	at	

https://www.enterpriseintegrationpatterns.com/).	
5. Martin	Fowler	-	Refactoring.	Improving	the	Design	of	Existing	Code.	Addison-Wesley,	1999.	
6. Carlos	Otero	-	Software	Engineering	Design	-	Theory	and	Practice,	CRC	Press,	Taylor	&	Francis	Group,	2012.	
7. Alex	Xu	–	System	Design	Interview	–	An	Insider’s	Guide	(Volumes	I	and	II),	ByteByteGo,	2020.	
8. Martin	Kleppmann	-	Designing	Data-Intensive	Applications:	The	Big	Ideas	Behind	Reliable,	Scalable,	and	

Maintainable	Systems,	O’Reilly	Media,	2017.	
9. Robert	C.	Martin	-	Clean	Architecture:	A	Craftsman's	Guide	to	Software	Structure	and	Design,	Pearson,	2017.	

	

9.	Corroborating	the	content	of	the	discipline	with	the	expectations	of	the	epistemic	community,	professional	
associations	and	representative	employers	within	the	Oield	of	the	program	

• The	course	respects	the	IEEE	and	ACM	Curricula	Recommendations	for	Computer	Science	studies.	
• The	course	exists	in	the	study	program	of	all	major	universities	in	Romania	and	abroad.	
	

10.	Evaluation	
Activity	type	 10.1	Evaluation	criteria	 10.2	Evaluation	methods	 10.3	Percentage	of	]inal	grade	

10.4	Course	

Presentation	during	the	
lecture	or	seminar	

Quality	of	the	presentation	
and	the	examples.	 20%	

Create	the	architecture	
documentation	for	a	
complex	software	
application	

Quality	and	level	of	detail	
of	the	documentation.	 40%	

Written	exam	during	the	
regular	or	retake	exam	
session.	

Quality	of	the	provided	
answers.	 10%	

10.5	Seminar/laboratory	
Analyse	the	architecture	
and	evolution	of	a	complex,	
open-source	application	

Quality	and	level	of	detail	
of	the	documentation.	 30%	

10.6	Minimum	standard	of	performance	
• Students	must	observe	the	standards	of	academic	integrity.	
• An	average	grade	of	5.00	must	be	obtained	from	team	presentation(s),	the	seminar	projects	and	the	written	

examination.	
	
11.	Labels	ODD	(Sustainable	Development	Goals)	
Not	applicable.	

	

Date:	
30.04.2025	

Signature	of	course	coordinator	

Assoc.	Prof.	PhD.	Molnar	Arthur-Jozsef	

Signature	of	seminar	coordinator	

Assoc.	Prof.	PhD.	Molnar	Arthur-Jozsef	

	 	 	

Date	of	approval:	
...	
	

	

Signature	of	the	head	of	department	

Assoc.prof.phd.	Adrian	STERCA	

	

	

https://www.enterpriseintegrationpatterns.com/

