## **SYLLABUS**

# **Software Quality**

# University year 2025-2026

#### 1. Information regarding the programme

| 1.1 Higher education                | Babeş Bolyai University                     |
|-------------------------------------|---------------------------------------------|
| institution                         |                                             |
| 1.2 Faculty                         | Faculty of Mathematics and Computer Science |
| 1.3 Department                      | Department of Computer Science              |
| 1.4 Field of study                  | Computer Science                            |
| 1.5 Study cycle                     | Master                                      |
| 1.6 Study programme / Qualification | Software Engineering                        |
| 1.7. Form of education              | Full time                                   |

# 2. Information regarding the discipline

| 2.1. Name of the dis                                       | scipli | ne <b>Software</b> | Software Quality |                          |          |                | Discipline code | MME8023 |
|------------------------------------------------------------|--------|--------------------|------------------|--------------------------|----------|----------------|-----------------|---------|
| 2.2. Course coordinator                                    |        |                    |                  | Prof.PhD. Simona Motogna |          |                |                 |         |
| 2.3. Seminar coordinator                                   |        |                    |                  | Prof.PhD. Simona Motogna |          |                |                 |         |
| 2.4. Year of study 2 2.5. Semester 2 2.6. Type of evaluati |        |                    | on               | Е                        | 2.7. Dis | cipline regime | Mandatory       |         |

#### 3. Total estimated time (hours/semester of didactic activities)

| 3.1. Hours per week                                                                   | 4              | of which: 3.2 course     | 2         | 3.3<br>seminar/laboratory/project | 1/0/1 |
|---------------------------------------------------------------------------------------|----------------|--------------------------|-----------|-----------------------------------|-------|
| 3.4. Total hours in the curriculum                                                    | 56             | of which: 3.5 course     | 28        | 3.6<br>seminar/laboratory/project | 28    |
| Time allotment for individual study (                                                 | ID) and        | self-study activities (S | <b>A)</b> |                                   | hours |
| Learning using manual, course support, bibliography, course notes (SA)                |                |                          |           |                                   | 20    |
| Additional documentation (in libraries, on electronic platforms, field documentation) |                |                          |           |                                   | 20    |
| Preparation for seminars/labs, homework, papers, portfolios and essays                |                |                          |           |                                   | 50    |
| Tutorship                                                                             |                |                          |           |                                   | 15    |
| Evaluations                                                                           |                |                          |           |                                   | 14    |
| Other activities:                                                                     |                |                          |           |                                   |       |
| 3.7. Total individual study hours 119                                                 |                |                          |           |                                   |       |
| 3.8. Total hours per semester                                                         | 175            |                          |           |                                   |       |
| 3.9. Number of ECTS credits                                                           | ECTS credits 7 |                          |           |                                   |       |

## 4. Prerequisites (if necessary)

| 4.1. curriculum   |                                   |
|-------------------|-----------------------------------|
| 4.2. competencies | Basic software development skills |

#### 5. Conditions (if necessary)

| 5.1. for the course                  | Room with projector       |
|--------------------------------------|---------------------------|
| 5.2. for the seminar /lab activities | Access to computer/laptop |

#### 6.1. Specific competencies acquired <sup>1</sup>

| Professional/essential<br>competencies | <ul> <li>analysis, design, and implementation of software systems;</li> <li>proficient use of methodologies and tools specific to programming languages and software systems;</li> <li>organization of software production processes.</li> </ul>                                                                          |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transversal<br>competencies            | <ul> <li>team work capabilities; able to fulfill different roles;</li> <li>professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities;</li> <li>entrepreneurial skills; working with economical knowledge; continuous learning;</li> </ul> |

#### 6.2. Learning outcomes

| Knowledge                       | <ul> <li>The graduate knows the software processes and can integrate them in the organisational culture of a software company</li> <li>The graduate proves advance programming skills which will allow to learn and comprehend modern technologies</li> </ul>                                                                                                                                        |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Skills                          | - The graduate has the ability to follow the entire life cycle of software system development<br>- The graduate proves the capacity to reflect over own learning resources                                                                                                                                                                                                                           |
| Responsibility<br>and autonomy: | <ul> <li>The graduate has the ability to communicate and develop relation and partnerships with industrial partners<br/>and with all actors involved in the software development process</li> <li>The graduate can apply advanced information system knowledge starting from a high level of abstraction and<br/>being able to offer implementation solutions for complex software system</li> </ul> |

#### 7. Objectives of the discipline (outcome of the acquired competencies)

| 7.1 General objective of the discipline  | <ul> <li>Know and understand fundamental concepts of software quality.</li> <li>To be able to apply basic methods for software analysis and software quality assurance.</li> </ul>                                                                              |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objective of the discipline | <ul> <li>At the end of the course, students</li> <li>will acquire theoretical aspects regarding software quality,</li> <li>will be able to define a software quality assurance plan and</li> <li>will be able to apply quality assurance techniques.</li> </ul> |

<sup>&</sup>lt;sup>1</sup> One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

#### 8. Content

| 8.1 Course                                             | Teaching methods                                          | Remarks                       |
|--------------------------------------------------------|-----------------------------------------------------------|-------------------------------|
| 1. Introduction; characteristics, facts and statistics | Exposure, description,<br>explanation_debate and dialogue |                               |
| statistics                                             | discussion of case studies                                |                               |
| 2. Testing, inspection, walkthrough                    | explanation, debate and                                   |                               |
|                                                        | dialogue, discussion of case<br>studies                   |                               |
| 3. Software quality assurance and SQ Models            | Exposure,description, explanation                         |                               |
| 4. SQ factors – reliability                            | Exposure,description, explanation                         |                               |
| 5. SQ factors – integrity, security, safety            | Exposure,description, explanation                         |                               |
| 6. SQ factors – efficiency, maintainability,           | Exposure,description,                                     |                               |
| flexibility                                            | explanation                                               |                               |
| 7. SQ factors – portability, reusability,              | Exposure,description,                                     |                               |
| interoperability                                       | explanation, discussion of case                           |                               |
|                                                        | studies                                                   |                               |
| 8. SQ metrics and tools                                | Exposure,description,                                     |                               |
|                                                        | explanation, discussion of case                           |                               |
|                                                        | studies                                                   |                               |
| 9. SQ standards                                        | Exposure, description, explanation,                       |                               |
| 10 SO standarda cont                                   | Eurosumo docamintion                                      |                               |
| 10. SQ Standarus – cont.                               | exploration discussion of case                            |                               |
|                                                        | studios                                                   |                               |
| 11 CMMI                                                | Exposure description                                      |                               |
|                                                        | explanation, discussion of case                           |                               |
|                                                        | studies                                                   |                               |
| 12. SQ assurance vs. SQ control                        | Exposure, description, explanation,                       |                               |
|                                                        | discussion of case studies                                |                               |
| 13. SQ and software development phases                 | Exposure,description,                                     |                               |
|                                                        | explanation,                                              |                               |
|                                                        | discussion of case studies                                |                               |
| 14. Reserved topic                                     |                                                           | Usually dedicated to an       |
|                                                        |                                                           | invited guest from a software |
|                                                        |                                                           | company                       |

Bibliography

- 1. D. Galin Software quality assurance From theory to implementation, Addison Wesley, 2003
- 2. S.H. Kan Metrics and models in Software Quality Engineering. Addison Wesley, 2nd ed., 2003
- 3. R.A. Khan, K. Mustafe, S.I. Ahson Software Quality: Concepts and Practice, Alpha Science, 2006
- 4. G. Schulmeyer Handbook of Software Quality Assurance , Artech House, 2007
- 5. D. Spinellis. Code Quality: The Open Source Perspective. Addison Wesley, 2006

S. McConnell – Code Complete, 2<sup>nd</sup> Edition, Microsoft Press, 2004

| 8.2 Seminar / laboratory                   | Teaching methods                   | Remarks                                                              |
|--------------------------------------------|------------------------------------|----------------------------------------------------------------------|
| 1. Apply and evaluate a Code review tool   | Conversation, debate, case studies | Seminar is organized as a total of<br>7 hours – 2 hours every second |
|                                            |                                    | week                                                                 |
| 2. Apply and evaluate a Metrics tool       | Conversation, debate,              |                                                                      |
|                                            | case studies, examples             |                                                                      |
| 3. Establish theme project                 | Conversation, debate, case studies |                                                                      |
| 4. Establish SQ moel                       | Evaluation                         |                                                                      |
| 5. Establish SQ factors to be followed and | Conversation, debate, case studies |                                                                      |
| associated metrics                         |                                    |                                                                      |
| 6. Discuss results and refine metrics      | Conversation, debate, case         |                                                                      |
|                                            | studies, examples                  |                                                                      |
| 7. Project presentation                    | Evaluation                         |                                                                      |

# 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Software Engineering studies;
- The course exists at the major universities in Romania offering similar study programs;
- The content of the course is considered by the software companies as important for average software development skills and quality assurance skills

#### 10. Evaluation

| Activity type                                                                                                                                                                                                                                | 10.1 Evaluation criteria                                                                                                                                                | 10.2 Evaluation methods                                                                                                 | 10.3 Percentage of final grade |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| 10.4 Course                                                                                                                                                                                                                                  | <ul> <li>know the basic principle of<br/>the domain;</li> <li>understand and apply the<br/>course concepts</li> <li>problem solving</li> </ul>                          | Oral exam                                                                                                               | 30%                            |  |  |  |
|                                                                                                                                                                                                                                              | SWOT analysis, risk analysis                                                                                                                                            | Workshop active participation                                                                                           | 10%                            |  |  |  |
| 10.5<br>Seminar/laboratory                                                                                                                                                                                                                   | <ul> <li>be able to imple-<br/>ment course concepts</li> <li>use tools for different SQ<br/>aspects</li> <li>evaluate quality factors for an<br/>application</li> </ul> | -Practical examination<br>-documentation<br>-portfolio<br>-continuous observations<br>Laboratory assignments<br>Project | 20%<br>40%                     |  |  |  |
| 10.6 Minimum standard of performance                                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                         |                                |  |  |  |
| <ul> <li>At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work</li> <li>Understand and apply software quality attributes in software development</li> <li>Evaluate software quality of applications</li> </ul> |                                                                                                                                                                         |                                                                                                                         |                                |  |  |  |

#### 11. Labels ODD (Sustainable Development Goals)<sup>2</sup>

Not applicable.

Date:

Signature of course coordinator

12.04.2025

Prof.PhD. Simona Motogna

Signature of seminar coordinator

Prof.PhD. Simona Motogna

<sup>&</sup>lt;sup>2</sup> Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.

Date of approval:

....

# Signature of the head of department

Assoc.prof.phd. Adrian STERCA