SYLLABUS

Requirements Engineering

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Software engineering
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Requirem	Requirements Engineering			Discipline cod	e MME8025	
2.2. Course coordinator Assoc. Prof. PhD. Grigoreta Coj			ı Cojocar					
2.3. Seminar coordinator				Assoc. Prof. PhD. Gr	igoreta	ı Cojocar		
2.4. Year of study	1	2.5. Semester	Semester 1 2.6. Type of evaluation E 2.7			2.7. Discipline regime	Compulsory	

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 sem+1 project
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)hours					
Learning using manual, course support, bibliography, course notes (SA) 22					22
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					49
Tutorship					3
Evaluations 5					5
Other activities:					-
3.7. Total individual study hours 94					
3.8. Total hours per semester	150				
3.9. Number of ECTS credits	6				

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competencies	Average design and programming skills in a programming language

5. Conditions (if necessary)

5.1. for the course	Videoprojector			
5.2. for the seminar /lab activities	-			

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	 use of theoretical foundations of computer science as well as of formal models development and maintenance of software systems
Transversal competencies	 efficient development of organized activities in an interdisciplinary group and the development of empathetic abilities for interpersonal communications, to relate to and cooperate with various groups use of efficient methods and techniques to learn, inform, research and develop the abilities to bring value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently in Romanian language and in an international language

6.2. Learning outcomes

	The student knows:
Knowledge	 The graduate is familiar with the concepts related to software modelling and is able to implement functional and non-functional requirements described in specific documents for the analysis and design of software systems.
ouy	• The graduate has the knowledge to apply model-based software development techniques.
<u> </u>	• The graduate has the necessary knowledge related to the UML language as well as the ability to use CASE tools to understand, document and implement software systems.
Skills	 The student is able to The graduate has the ability to observe and obtain information from various sources. The graduate has the ability to choose and use existing modules and environments for application development.
Responsibility and autonomy:	 The student has the ability to work independently to obtain The graduate is able to combine diverse information to formulate solutions and generate ideas for developing new products and applications. The graduate has the ability to apply general rules to specific problems and produce relevant
Resj and	solutions.

7. Objectives of the discipline (outcome of the acquired competencies)

7. Objectives of the discipline (outcome of the acquired competencies)				
7.1 General objective of the discipline	 Be able to understand requirements engineering concepts and techniques Average requirements engineering skills 			
7.2 Specific objective of the discipline	 To understand the role of requirements engineering for software engineering To understand the basic concepts of software engineering. To apply the methods for requirements gathering and analysis. 			

8. Content

8.1 Course	Teaching methods	Remarks
1.Introduction. Basic concepts. Role of	Exposure: description,	

requirements engineering.	explanation, examples, discussion	
	of case studies	
	Exposure: description,	
2. Requirements Elicitation	explanation, examples, discussion	
	of case studies	
3. Types of Requirements. Structure of System	Exposure: description,	
Specification Document.	explanation, examples, discussion	
Specification Document.	of case studies	
	Exposure: description,	
4. SysML. Behaviour Driven Development	explanation, examples, discussion	
	of case studies	
	Exposure: description,	
5. Requirements Prioritization	explanation, examples, discussion	
•	of case studies	
6 .Projects presentation	Discussions	
· · ·		
7. Requirements traceability and	Exposure: description,	
interdependencies. Impact Analysis	explanation, examples, discussion	
interdependencies. Impact Analysis	of case studies	
9 Quality Accurance for Paguiraments	Exposure: description,	
8. Quality Assurance for Requirements.	explanation, examples, discussion	
Requirements Negotiation	of case studies	
	Exposure: description,	
9. Business Motivation Model (BMM)	explanation, examples, discussion	
	of case studies	
	Exposure: description,	
10. BMM to SOA	explanation, examples, discussion	
	of case studies	
11 Projects presentation	Discussions	
11. Projects presentation	Discussions	
	Exposure: description,	
12. Security requirements engineering	explanation, examples, discussion	
	of case studies	
	Exposure: description,	
13. Agile Methods and RE	explanation, examples, discussion	
	of case studies	
14. Projects presentation	Discussions	

Bibliography

- A. Aurum, C. Wohlin Engineering and Managing Software Requirements, Springer, 2005
- B. Berenbach, D. Paulish a.o. Software & Systems requirements Engineering: In practice, McGraww Hill, 2009
- E.Hull, K. Jackson, J. Dick Requirements Engineering, Springer, 2005
- R. Young The requirement engineering handbook, Artech House, 2004
- C. Williams, M. Kaplan, T. Klinger, A. Paradkar, "Toward Engineered, Useful Use Cases", in Journal of Object Technology, Vol. 4, No. 6, Special Issue: Use Case Modeling at UML-2004, 2005, pp. 45-57
- Dan North, Introducing BDD, http://dannorth.net/introducing-bdd/
- Suzanne Robertson, James Robertson, Mastering the Requirements Process: Getting Requirements Right (3rd Edition), Addison-Wesley Professional, 2012
- Karl Wiegers, Joy Beatty, Software Requirements (3rd Edition), Microsoft Press, 2013

8.2 Seminar / laboratory	Teaching methods	Remarks
S1. Project Requirements	Discussion	The seminar is structured as 2 hours classes every second week
S2. Requirements elicitation	Dialogue, case studies	
S3. Projects presentations	Discussion	
S4. Behavior Driven Development	Dialogue, case studies	

S5. Requirements prioritization	Dialogue, case studies	
S6. Prototype development	Dialogue, case studies	
S7. Project evaluation	Discussion	
	•	•

Bibliography

- A. Aurum, C. Wohlin Engineering and Managing Software Requirements, Springer, 2005
- B. Berenbach, D. Paulish a.o. Software & Systems requirements Engineering: In practice, McGraww Hill, 2009
- E.Hull, K. Jackson, J. Dick Requirements Engineering, Springer, 2005
- R. Young The requirement engineering handbook, Artech House, 2004

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered the software companies as important for advanced requirements engineering and designing skills

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Know the basic concepts of requirements engineering	Written exam	60%
10.5 Seminar/laboratory	Be able to gather and analyze requirements for a new software	Project (presentation, review, running software)	40%
10.6 Minimum standard of performance			

At least grade 5 (from a scale of 1 to 10) at both written exam and project.

Project evaluation: 30% for the requirements elicitation, 40% for requirements specification and 30% for design and prototype. Each missed deadline will be penalized with 3 points. The project can be delivered only during the semester. The students who do not obtain at least grade 5 for the project during the semester, may deliver the project only during the re-exam session, and the grade will be at most 5.

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.

Date:

...

Signature of course coordinator

Signature of seminar coordinator

Assoc. Prof. PhD. Grigoreta Cojocar

Assoc. Prof. PhD. Grigoreta Cojocar

Date of approval:

•••

Signature of the head of department

Assoc. Prof. PhD. Adrian STERCA