SYLLABUS

Introduction to Natural Language Processing

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University, Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Computer Science in Romanian
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Introduct	Introduction to Natural Language Processing				g Discipline code	MLE8151
2.2. Course coordinator				Lecturer Ph.D. Lupea Mihaiela				
2.3. Seminar coordinator				Lecturer Ph.D. Lupea Mihaiela				
2.4. Year of study	3	2.5. Semester	6	2.6. Type of evaluation	on	С	2.7. Discipline regime	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	5	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 lab+ 2pr
3.4. Total hours in the curriculum	60	of which: 3.5 course	24	3.6 seminar/laboratory/project	36
Time allotment for individual study (ID) and	self-study activities (S	A)		hours
Learning using manual, course support, bibliography, course notes (SA)				15	
Additional documentation (in libraries, on electronic platforms, field documentation)				14	
Preparation for seminars/labs, homework, papers, portfolios and essays				14	
Tutorship					5
Evaluations					7
Practical project:				10	
3.7. Total individual study hours 65				•	
3.8. Total hours per semester	125				
3.9. Number of ECTS credits	3.9. Number of ECTS credits 5				

4. Prerequisites (if necessary)

	000000133	
4.1. curriculum	Formal languages, Data structures, Graphs Algorithms	
4.2. competencies	Programming skills in a high level programming language	

5. Conditions (if necessary)

5.1. for the course	-
5.2. for the seminar /lab activities	Laboratory with computers; high level programming language environment (.NET
5.2. for the seminar /lab activities	or any Java environment a.s.o.)

6.1. Specific competencies acquired ¹

Professional/essential competencies	 Use of software tools in an interdisciplinary context. Use of artificial intelligence concepts and techniques to solve real-world problems.
Transversal competencies	 Application of organized and efficient work rules, of responsible attitudes towards the didactic-scientific field, to bring creative value to own potential, with respect for professional ethics principles and norms. Use of efficient methods and techniques to learn, inform, research and develop the abilities to bring value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently in Romanian language and in an international language

6.2. Learning outcomes

Knowledge	 The graduate has the necessary knowledge for using computers, developing software programs and applications, information processing. The graduate has the necessary knowledge for literature review.
s	 The graduate is able to identify complex problems and examine related issues to develop solving options and implement solutions. The graduate has the ability to choose and use programming paradigms (procedural, object-oriented, functional) to develop software applications appropriate for the specific domain of the application
Skills	 being developed. The graduate has the ability to choose and use existing modules and environments for application development. The graduate is able to write a scientific/technical report.
Responsibility and autonomy:	 The graduate is able to define/identify/understand research problems in computer science. The graduate has the ability to understand and communicate information effectively. The graduate has the necessary skills to use research support tools.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	•	To introduce the basic principles, domains and tasks in Natural Language Processing (NLP)
discipline	•	To understand the current state of the art in order to realize an overview of a specific domain in NLP and to implement a NLP tool.

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

7.2 Specific objective of the discipline

- Apply and use formal models (logics, grammars, parsing), statistic models (HMM), artificial intelligence algorithms and techniques to solve different tasks at the syntactic level (POS-tagging, parsing, chunking), and semantic level (keyword extraction, document summarization, anaphora resolution, sentiment analysis, word sense disambiguation) in Natural Language Processing domain for English and Romanian languages.
- Use of Large Language Models (LLMs) to solve NLP tasks.

8. Content

8.1 Course	Teaching methods	Remarks
Course 1.	Exposure: description,	
Natural Language Processing (NLP): stages,	explanation, examples, debate,	
domains, applications.	dialogue	
Course 2. Part of speech tagging	Exposure: description,	
WordNet and RoWordNet - knowledge	explanation, examples, debate,	
	dialogue	
structure, semantic relations, lexical relations		
Course 3.	Exposure: description,	
Text representation and natural language models. Text classification.	explanation, examples, dialogue	
Course 4. Syntactic parsing	Exposure: description,	
- grammar rules for English - sentence level	explanation, dialogue, examples.	
construction;		
- Cocke-Kasami-Yonger (CKY) algorithm;		
Course 5. Hidden Markov Model	Exposure: description,	
- Markov chains, Hidden Markov Model(HMM);	explanation, examples, debate,	
- three canonical problems associated with	dialogue	
HMM		
- the forward algorithm; Viterbi algorithm.		
Course 6. Keyword extraction	Exposure: description,	
- TextRank and RAKE algorithms	explanation, examples, dialogue	
Course 7. Document summarization	Exposure: description,	
- approaches based on clustering and graphs.	explanation, examples, dialogue	
Course 8.	Evaluation	
Students' presentations of NLP tasks and tools.		
Course 9. Sentiment analysis	Exposure: description,	
- opinion mining in social media	explanation, debate, examples,	
- emotion analysis in literature	dialogue	
Course 10. Anaphora resolution	Exposure: description,	
- Lapin and Lease algorithm	explanation, debate, examples,	
- Mitkov's algorithm	dialogue	
Course 11. Word Sense Disambiguation	Exposure: description,	
- dictionary and graph-based approaches.	explanation, dialog, examples	
Course 12.	Evaluation	
Students' presentations of the practical projects		

Bibliography

- 1. J.ALLEN: Natural language understanding, Benjamin/Cummings Publisher, 2nd ed., 1995.
- 2. E. CHARNIAK: Statistical language learning, MIT press, 1996.
- 3. L. DENG, Y. LIU: Deep learning in Natural Language Processing, Springer Verlag, Singapore, 2018
- 4. D.FEHRER et al: Description logics for natural language processing. In Proc. of the 1994 Description Logic Workshop (DL'94), 1994.
- 5. H. HELBIG: Knowledge Representation and the Semantics of Natural Language, Springer, 2006.
- 6. D.JURAFSKY, J.MARTIN: Speech and language processing, Prentice Hall, 2000.
- 7. C.MANNING, H.SCHUTZE: Foundation of statistical natural language processing, MIT, 1999.

- 8. R. MITKOV(ed): The Oxford Handbook of Computational Linguistics, Oxford University Press, 2003.
- 9. D. TATAR: Inteligenta artificiala. Aplicatii in prelucrarea limbajului natural, Editura Albastra, Microinformatica, 2003, ISBN 973-650-100-01.
- 10. S. VAJJALA, B. MAJUMDER, A. GUPTA, H. SURANA: Practical Natural Language Processing. A Comprehensive Guide to Building Real-World NLP Systems, O'REILLY. 2020.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Study of platforms and libraries from	Documentation on electronic	The seminar/lab is structured as
different programming languages that offer	platforms, explanation, dialogue,	2 hours classes every second
preprocessing functions for texts in	case studies	week
Romanian and English languages.		
2. Study of the LLMs (large language models)	Documentation on electronic	
for English and Romanian languages.	platforms, dialogue, case studies	
Work with WordNet, Romanian WordNet and		
WordNetSimilarity. Work with dedicated		
tools for keyword extraction, summarization,		
anaphora resolution, sentiment analysis.		
3. Identify practical tasks in Romanian NLP.	Documentation on electronic	
Choose the NLP task to be solved, study	platforms, dialogue, case studies	
different approaches, choose the approach		
that will be implemented. Search for the		
input data specific to the chosen task.		
4. Students' presentations of a NLP task/ tool.	Evaluation	
5. Discussions about the implementation of an	Explanation, dialogue, case	
NLP tool.	studies	
Develop resources for Romanian NLP tasks		
6. Students presentations of the practical	Evaluation	
projects.		

Bibliography

- 1. Rada Mihalcea: www.cs.unt.edu/~rada/downloads.html
- 2. Resurse lingvistice in limba romana: www.racai.ro

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The optimization of the search on Web, the interfaces in natural language and the recent aspects of text mining need a good understanding of Natural Language Processing.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade		
10.4 Course	Know to write an overview of a specific NLP task	Theoretical report – presentation of a NLP task.	35%		
	Be able to implement course algorithms	Practical project - implementation of a NLP tool.	35%		
10.5 Seminar/laboratory	Be able to apply theoretical concepts in practical tasks	Develop resources for Romanian NLP tasks	20%		
10.6 Activity	Activity during courses and seminars.	Active attendance	10%		
10.7 Minimum standard of performance					
The final grade to be at least 5 (from a scale of 1 to 10).					

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:	Signature of course coordinator	Signature of seminar coordinator
15.04.2025		

Lect. PhD. Mihaiela LUPEA Lect. PhD. Mihaiela LUPEA

Date of approval: Signature of the head of department

Assoc.Prof. PhD. Adrian STERCA

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write "Not applicable.".