SYLLABUS

Quantum computing with applications in cryptography and AI

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Computer Science
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ng i -	Quantum computing with applications in cryptography and AI					Discipline code	MLE5216
2.2. Course coordinator Mihoc Tudor Da					udor Dan				
2.3. Seminar coordinator				Mi	ihoc Tu	udor Dan			
2.4. Year of study	3	2.5. Semester	Semester 2 2.6. Type of evaluation C			С	2.7. Dise	cipline regime	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	5	of which: 3.2 course	2	3.3 seminar/ laboratory/project	0/1/2
3.4. Total hours in the curriculum	60 of which: 3.5 course 24 3.6 seminar/ laboratory/project			0/12/24	
Time allotment for individual study (II	D) and s	elf-study activities (SA)		hours
Learning using manual, course support, b	oibliogra	phy, course notes (SA)			24
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					0
3.7. Total individual study hours 65					
3.8. Total hours per semester	125				
3.9. Number of ECTS credits	5				

4. Prerequisites (if necessary)

4.1. curriculum	Basic knowledge of calculus and linear algebra.
4.2. competencies	Basic programming skills in Python.

5. Conditions (if necessary)

5.1. for the course	Projector.			
5.2. for the seminar /lab activities	Laboratory with computers. Software: Anaconda, Python, Qiskit.			
6.1 Specific competencies acquired 1				

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/ essential competencies	 advanced programming skills in high-level programming languages; development and maintenance of software systems; use of software tools in an interdisciplinary context;
Transversal competencies	 application of organized and efficient work rules, of responsible attitudes towards the didactic-scientific field, to bring creative value to own potential, with respect for professional ethics principles and norms; efficient development of organized activities in an interdisciplinary group and the development of empathetic abilities for interpersonal communications, to relate to and cooperate with various groups; use of efficient methods and techniques to learn, inform, research and develop the abilities to bring value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently in Romanian language and in an international language;

6.2. Learning outcomes

÷	
	• The graduate has the necessary knowledge for using computers, developing software programs and applications, information processing;
	• The graduate has the ability to develop, design and create new applications, systems or products
Knowledge	using best practices of the field;
	• The graduate has the necessary skills for computer program design and software systems analysis.
	• The graduate is able to identify complex problems and examine related issues to develop solving
	options and implement solutions;
	• The graduate has the ability to apply general rules to specific problems and produce relevant
	solutions;
Cleille	• The graduate is able to combine diverse information to formulate solutions and generate ideas for
Skills	developing new products and applications;
	• The graduate has knowledge related to programming, mathematics, engineering and technology
	and has the skills to use them to create complex information technology systems;
	• The graduate has the ability to understand and communicate information effectively;
	• The graduate has the knowledge to select and use appropriate instructional procedures to facilitate
Responsibility	the process of knowledge assimilation;
and autonomy:	• The graduate is able to present and explain methods, algorithms, paradigms and techniques used in
	various branches of computer science;

7. Objectives of the discipline (outcome of the acquired competencies)

	• The goal is to provide attendees with a comprehensive understanding of quantum
7.1 General objective of the	computing while fostering curiosity, critical thinking, and motivation to engage with
discipline	this cutting-edge interdisciplinary area.
	• To provide students with a comprehensive understanding of quantum computing
7.2 Specific objective of the	principles, techniques, and their applications in two key fields: cryptography and
discipline	artificial intelligence (AI).

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction—Mathematical Prerequisites		
2. Fundamental notions of quantum computing	Exposition;	
(Qubits and the Bloch Sphere)	Dialog;	
3. Qubit gates. Quantum circuits	Presentation;	
4. The phase kick-back phenomenon	Interactive exposure;	
5. Quantum search algorithms		

6. Schor's algorithm
7. Quantum cryptography and post-quantum cryptography. Quantum Computing Attacks on
RSA 8. Quantum key distribution (QKD). Noise in QKD (eyedropper)
9. Clustering Structure and Quantum Computing
10. Quantum Pattern Recognition
11. Quantum Classification
12. Quantum Regression

Bibliography

1. Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002): 558-559.

2. Gisin, Nicolas, et al., "Quantum cryptography." Reviews of modern physics 74.1 (2002): 145.

3. Yan, Song Yuan. "Cryptanalytic attacks on RSA." (2007).

4. Bruß, Dagmar, and Norbert Lütkenhaus. "Quantum key distribution: from principles to practicalities." Applicable Algebra in Engineering, Communication and Computing 10.4 (2000): 383-399.

5. Shor, Peter W., "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer." SIAM review 41.2 (1999): 303-332.

6. P. Wittek, Quantum machine learning: what quantum computing means to data mining, Academic Press, Elsevier, 2014.

7. S. D. Sarma, D. Dong-Ling, and D. Lu-Ming, Machine learning meets quantum physics, arXiv preprint arXiv:1903.03516, 2019.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Quantum random number generators		
2. Quantum FFT		
3. Deutsch's algorithm. The Deutsch–Jozsa		
algorithm		
4. Grover's Search	Example; Algorithms implementation;	
5. Quantum Algorithm for Integer	Algorithms implementation,	
Factorization		
6. Quantum algorithm for discrete logarithms		
7. Quantum Neural Networks example		

Bibliography

1. Nielsen, Michael A., and Isaac Chuang. "Quantum computation and quantum information." (2002): 558-559.

2. Gisin, Nicolas, et al., "Quantum cryptography." Reviews of modern physics 74.1 (2002): 145.

3. Yan, Song Yuan. "Cryptanalytic attacks on RSA." (2007).

4. Bruß, Dagmar, and Norbert Lütkenhaus. "Quantum key distribution: from principles to practicalities." Applicable Algebra in Engineering, Communication and Computing 10.4 (2000): 383-399.

5. Shor, Peter W., "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer." SIAM review 41.2 (1999): 303-332.

6. P. Wittek, Quantum machine learning: what quantum computing means to data mining, Academic Press, Elsevier, 2014.

7. S. D. Sarma, D. Dong-Ling, and D. Lu-Ming, Machine learning meets quantum physics, arXiv preprint arXiv:1903.03516, 2019.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the scheme and structure used by the most important universities in USA and Europe;
- The course exists in the study program of major universities abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade

10.4 Course	The students must be able to exemplify and use basic and advanced concepts of quantum computing.	Colloquium	50%
10.5 Seminar/laboratory	The students must be able to implement the algorithms described in the course and discussed at the demonstrations during the laboratories.	Lab. assignments	50%
10.6 Minimum standard of performance			
• At least grade 5 (from a scale of 1 to 10) for both evaluation types.			

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:Signature of course coordinatorSignature of seminar coordinator15.04.2025Lecturer PhD. Tudor Dan MihocLecturer PhD. Tudor Dan Mihoc

Date of approval:

...

Signature of the head of department

Assoc. Prof. PhD. Adrian STERCA

 $^{^{2}}$ Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable.*".