
SYLLABUS

Software engineering

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babeș-Bolyai University

1.2. Faculty Faculty of Mathematics and Computer Science

1.3. Department Department of Computer Science

1.4. Field of study Computers and information technology

1.5. Study cycle Bachelor

1.6. Study programme/Qualification Information engineering

1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Software engineering Discipline code MLE5177

2.2. Course coordinator Assoc. Prof. Vescan Andreea, PhD

2.3. Seminar coordinator Assoc. Prof. Vescan Andreea, PhD

2.4. Year of study 3 2.5. Semester 6 2.6. Type of evaluation E 2.7. Discipline regime DD

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum
• Fundamentals of programming
• Object-Oriented programming

4.2. competencies • Programming in a high-level object-orietend language

5. Conditions (if necessary)

5.1. for the course • Videoprojector

5.2. for the seminar /lab activities
• Computers
• UML Case Tool
• Java/.NET IDE

6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 5 of which: 3.2 course 2
3.3
seminar/laboratory/project

1 S, 1
LP, 1P

3.4. Total hours in the curriculum 70 of which: 3.5 course 28
3.6
seminar/laboratory/project

42

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 20

Additional documentation (in libraries, on electronic platforms, field documentation) 20

Preparation for seminars/labs, homework, papers, portfolios and essays 20

Tutorship 10

Evaluations 10

Other activities:

3.7. Total individual study hours 80

3.8. Total hours per semester 150

3.9. Number of ECTS credits 6

P
ro

fe
ss

io
n

a
l/

e
ss

e
n

ti
a

l
co

m
p

e
te

n
ci

e
s

• Problem solving using specific computer science and computer engineering tools
• Design and integration of information systems using technologies and programming environments

T
ra

n
sv

e
rs

a
l

co
m

p
e

te
n

ci
e

s

• Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation
• Identifying, describing and conducting processes in the project management field, undertaking

different team roles and clearly and concisely describing own profesional results, verbally or in writing
• Demonstrating initiative and pro-active behavior for updating professional, economical and

organizational culture knowledge

6.2. Learning outcomes

K
n

o
w

le
d

g
e

The student knows:
• The graduate knows and understands the basic concepts, theories and methods of Computer and

Information Technology and is able to use them appropriately in professional communication.
• The graduate has the ability to choose and use programming paradigms (procedural, object-oriented,

functional) to create software applications appropriate to the specific field of the developed
application.

• The graduate has the necessary skills to apply different methods and tools for analyzing and
visualizing research results. The graduate is able to write a scientific report.

• The graduate has the necessary knowledge related to the stages of the software life cycle and software
process models.

• The graduate knows the concepts related to software modeling and can implement functional and
non-functional requirements described in specific documents for the analysis and design of software
systems.

S
k

il
ls

The student is able to
• The graduate is able to design / implement hardware, software and communications components

using design methods, languages, algorithms, data structures, protocols and technologies, and
evaluate their functional and non-functional characteristics based on metrics.

• The graduate is able to develop systems and applications for the maintenance and use of hardware,
software and communications systems.

• The graduate performs the testing and qualitative evaluation of the functional and non-functional
characteristics of the information systems, based on specific criteria.

• The graduate has the ability to develop, design and create new applications, systems or products using
best practices in the field of computer science.

R
e

sp
o

n
si

b
il

it
y

a

n
d

 a
u

to
n

o
m

y
:

The student has the ability to work independently to obtain
• The graduate is familiar with tools used for testing, debugging, validating software applications.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

• Aquiring knowledge of and applying sound concepts, principles and

engineering techniques when building software systems

7.2 Specific objective of the
discipline

• Aquiring knowledge of software lifecycle stages and process models

• Understanding software modeling

• Aquiring knowledge of and applying model-based software

development techniques

• Getting used to correctly apply the UML language

• Aquiring ability to use UML Case tools

• Aquiring basic project management knowledge

• Aquiring knowledge of software development methodologies, both

traditional and agile

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to Software

Engineering: motivation,

definitions, concepts, activities

Explanation, conversation,

discussing case studies

2. Software lifecycle stages. Software

process models

Explanation, conversation,
discussing case studies

3. Software complexity
management techniques
(abstraction, decomposition,
modeling). Modeling in Software
Engineering: definitions, model
types and modeling tools

Explanation, conversation,
discussing case studies

4. Introduction to the UML
language: concepts, diagram
types, syntax/semantics, tools

Explanation, conversation,
discussing case studies

5. Requirements Elicitation:
concepts, activities, examples

Explanation, conversation,
discussing case studies

6. Requiements Analysis: concepts,

activities, examples

Explanation, conversation,
discussing case studies

7. System Design: concepts,

principles, activities

Explanation, conversation,
discussing case studies

8. Object Design: concepts,

principles, activities

Explanation, conversation,
discussing case studies

9. Object Design - Design Patterns
Explanation, conversation,
discussing case studies

10. Object Design – Interface

Specification. Design by Contract –

using assertions in modeling

Explanation, conversation,
discussing case studies

11. System Implementation. Model-

based code generation: concepts,

principles, activities, examples

Explanation, conversation,
discussing case studies

12. Software Verification and

Validation

Explanation, conversation,
discussing case studies

13. Software Management: concepts

and activities

Explanation, conversation,
discussing case studies

Bibliography

[1] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide - V.2.0, Addison

Wesley, 2005.

[2] Bruegge, B., Dutoit, A., Object-Oriented Software Engineering Using UML, Patterns and Java - 3rd
Edition, Prentice Hall, 2009.

[3] Fowler, M. et al., Refactoring - Improving the Design of Existing Code, Addison Wesley, 1999.

[4] Fowler, M., Scott, K., UML Distilled: A Brief Guide to the Standard Object Modeling Language -2nd ed.,

Addison-Wesley, 1999.

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Addison-Wesley, 1996.

[6] Martin, R.C., Agile Software Development: Principles, Patterns, and Practices, Prentice Hall, 2002.
[7] Pârv, B., Analiza si proiectarea sistemelor, Univ. Babeș-Bolyai, CFCID, Facultatea de Matematică și

Informatică, Cluj-Napoca, 2004.

[8] Pressman, R.S., Software Engineering - A Practitioners Approach - 6th ed., McGraw-Hill, 2005.

[9] Schach, S.R., Object-Oriented and Classical Software Engineering - 6th ed., McGraw-Hill, 2005.

[10] Sommerville, I., Software Engineering - 8th edition, Addison-Wesley, 2006.

8.2 Seminar Teaching methods Remarks

1. Using Use Case Diagrams to describe a
functional model: concepts, relations,
syntax, use case description templates

explanation, conversation,
arguing, exemplifying

2. Using Class Diagrams to describe
structural models: concepts, relations,
syntax, problem domain model vs.
solution model

explanation, conversation,
arguing, exemplifying

3. Using Sequence/Communication
Diagrams to describe dynamic models:
concepts. syntax, equivalence

explanation, conversation,
arguing, exemplifying

4. Using Statechart Diagrams to describe
dynamic models. The State Design
Pattern

explanation, conversation,
arguing, exemplifying

5. The use of assertions in modeling.
Design by Contract

explanation, conversation,
arguing, exemplifying

6. Automatic code generation based on
UML/OCL models

explanation, conversation,
arguing, exemplifying

7. Testing: concepts, principles, tools
explanation, conversation,
arguing, exemplifying

8.3 Laboratory

1. Agile methodologies: planning
software development. Investigating
various UML/OCL Case Tools (ex.
StarUML, OCLE)

explanation, conversation,
arguing, exemplifying

2. Using an UML Case Tool for drawing
Use Case Diagrams

explanation, conversation,
arguing, exemplifying

3. Using an UML Case Tool for drawing
Class Diagrams corresponding to the
problem domain

explanation, conversation,
arguing, exemplifying

4. Using an UML Case Tool for drawing
Sequence/Communication Diagrams
and refining the structural model

explanation, conversation,
arguing, exemplifying

5. Using an UML Case Tool for drawing
Statechart Diagrams

explanation, conversation,
arguing, exemplifying

6. Using an UML/OCL Case Tool for
specifying/evaluating assertions on
UML models

explanation, conversation,
arguing, exemplifying

7. Using an UML/OCL Case Tool for code
generation

explanation, conversation,
arguing, exemplifying

8.4 Project

1. Agile methodologies: planning
software development. Investigating
various UML/OCL Case Tools (ex.
StarUML, OCLE)

explanation, conversation,
arguing, exemplifying

2. Using an UML Case Tool for

drawing Use Case Diagrams

explanation, conversation,
arguing, exemplifying

3. Using an UML Case Tool for

drawing Class Diagrams

corresponding to the problem

domain

explanation, conversation,
arguing, exemplifying

4. Using an UML Case Tool for

drawing Sequence/Communication

Diagrams and refining the

structural model

explanation, conversation,
arguing, exemplifying

5. Using an UML Case Tool for

drawing Statechart Diagrams

explanation, conversation,
arguing, exemplifying

6. Using an UML/OCL Case Tool for

specifying/evaluating assertions on

UML models

explanation, conversation,
arguing, exemplifying

7. Using an UML/OCL Case Tool for

code generation

explanation, conversation,
arguing, exemplifying

Bibliography

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

• The course obeys to the ACM/IEEE curricula guidelines for computer science study programs

• Similar courses are taught at most universities in Romania having similar study programs

• Software companies view this course as offering important background knowledge for future software

developers

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course/Seminar

Knowledge of the basic

software engineering

concepts and principles

taught Written exam

60%
 Software modeling

knowledge and ability to

use the UML language

in this purpose

10.5 Laboratory/Project
Applying aquired

knowledge in building a
Project

40%

small/medium-sized

software system

10.6 Minimum standard of performance

• At least grade 5 at both written exam and project

• Attendance at least 5 seminars and 6 laboratories is MANDATORY for passing the discipline. Students who do not
attend at least 5 seminars and 6 laboratories cannot take the exam even in the retake session.

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

Date:

Signature of course coordinator

Assoc. Prof. Vescan Andreea, PhD

Signature of seminar coordinator

Assoc. Prof. Vescan Andreea, PhD

Date of approval:

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the

discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no

label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

