SYLLABUS

Functional and Logic Programming

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution

Babes Bolyai University

1.2. Faculty

Faculty of Mathematics and Computer Science

1.3. Department

Department of Computer Science

1.4. Field of study

Computers and Information Technology

1.5. Study cycle

Bachelor

1.6. Study programme/Qualification

Information Engineering

1.7. Form of education

Full Time

2. Information regarding the discipline

2.1. Name of the discipline | Functional and Logic Programming

‘ Discipline code ‘

2.2. Course coordinator

Assist.Prof.Dr. Cristian-Paul Bara

2.3. Seminar coordinator

Assist.Prof.Dr. Cristian-Paul Bara

2.4. Year of study ‘ 3 ‘2.5. Semester ‘ 5 |2.6. Type ofevaluation‘ C ‘2.7. Discipline regime

‘ Compulsory DD

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week 4 of which: 3.2 course | 2 g:;ninar/laboratory/project 1 ;‘P
3.4. Total hours in the curriculum 56 of which: 3.5 course | 28 g(.e?ninar /laboratory /project 28
Time allotment for individual study (ID) and self-study activities (SA) hours
Learning using manual, course support, bibliography, course notes (SA) 22
Additional documentation (in libraries, on electronic platforms, field documentation) 18
Preparation for seminars/labs, homework, papers, portfolios and essays 27
Tutorship 11
Evaluations 16

Other activities:

3.7. Total individual study hours

94

3.8. Total hours per semester

150

3.9. Number of ECTS credits

4. Prerequisites (if necessary)

4.1. curriculum

¢ Fundamentals of Programming
e Mathematical Foundations of Computer Science

4.2. competencies o

Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course

e Students will attend the course with their mobile phones shut

down

e Students will attend the course with their laptops shut down;
students with special needs will discuss these at the

beginning of the semester

5.2. for the seminar /lab activities

e Students will attend the lab with their mobile phones shut

down

e Laboratory with computers; high level declarative
programming language environment (CLisp, SWIProlog)

6.1. Specific competencies acquired 1!

Professional/essential
competencies
L]

Transversal
competencies
[]

6.2. Learning outcomes

)
80
i
= The student knows: ...
)
=]
~
2
| The student is able to ...
7
2
2 2
2 % The student has the ability to work independently to obtain ...
2w
o g
]
& 3

7. Objectives of the discipline (outcome of the acquired competencies)

e Get accustomed with basic notions, concepts, theories and
models of new programming paradigms (functional and logic
programming)

7.1 General objective of the
discipline

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

7.2 Specific objective of the
discipline

Get accustomed with a programming language for each of these
paradigms (Common Lisp and Turbo Prolog)

Acquire the idea of using these programming paradigms based on
the applications' necessities

Assure the necessary base for approaching certain advanced
courses

Ability to apply declarative programming techniques to different
real life problems

Ability to model phenomena using declarative techniques
Improved programming abilities using the declarative paradigm

8. Content

8.1 Course

Teaching methods

Remarks

1. Basic elements of Prolog. Facts and rules in
Prolog. Goals. The control strategy in Prolog.
Variables and composed propositions.
Anonymous variables. Rules for matching. The
flow model. Sections of a Prolog program.
Examples

Exposure: description,
explanation, examples, discussion
of case studies

2. The Prolog program. Predefined domains.
Internal and external goals. Multiple arity
predicates. The IF symbol (Prolog) and the IF
instruction (other languages). Compiler
directives. Arithmetic expressions and
comparisons. Input/output operations. Strings

Exposure: description,
explanation, examples, discussion
of case studies

3. Backtracking. The backtracking control. The
"fail" and "!"(cut) predicates. Using the "!"
predicate. Type of cuts. The "not" predicate.
Lists in Prolog. Recursion. Examples for
backtracking in Prolog. Finding all solutions in
the same time. Examples of predicates in
Prolog. Non-deterministic predicates

Exposure: description,
explanation, examples, discussion
of case studies

4. Composed objects and functors. Unifying
composed objects. Arguments of multiple
types; heterogeneous lists. Comparisons for
composed objects. Backtracking with cycles.
Examples of recursive procedures. The stack
frame. Optimization using the "tail recursion"”.
Using the "cut" predicate in order to keep the
"tail recursion”.

Exposure: description,
explanation, examples, discussion
of case studies

5. Recursive data structures. Trees as data
structures. Creating and traversing a tree.
Search trees. The internal database of Prolog.
The "database" section. Declaration of the
internal database. Predicates concerning
operations with the internal database

Exposure: description,
explanation, examples, discussion
of case studies

6. Advanced issues of Backtracking in Prolog.
Files management in Prolog.

Exposure: description,
explanation, examples, discussion
of case studies

7. Programming and programming languages.
Imperative programming vs. declarative
programming. Introduction. The importance of
the functional programming as a new
programming methodology. History and
presentation of LISP

Exposure: description,
explanation, examples, discussion
of case studies

8. Basic elements in Lisp. Dynamic data
structures. Syntactic and semantic rules.
Functions' classification in Lisp. Primitive
functions in Lisp. Basic predicates in Lisp.

Exposure: description,
explanation, examples, discussion
of case studies

9. Predicates for lists; for numbers. Logic and
arithmetic functions. Defining user functions.
The conditional form. The collecting variable
method. Examples

Exposure: description,
explanation, examples, discussion
of case studies

10. Symbols' managing. Other functions for
lists' accessing. OBLIST and ALIST. Destructive
functions. Comparisons. Other interesting
functions. Examples

Exposure: description,
explanation, examples, discussion
of case studies

11. Definitional mechanisms. The EVAL form.
Functional forms; the functions FUNCALL and
APPLY. LAMBDA expressions, LABEL

expressions. Generators, functional arguments.

MAP functions. Iterative forms. Examples

Exposure: description,
explanation, examples, discussion
of case studies

12. Other elements in Lisp. Data structures.
Macrodefinitions. Optional arguments.
Examples

Exposure: description,
explanation, examples, discussion
of case studies

13.-14. Graded paper in Logic and Functional
Programming

Written test

Bibliography

1. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in

Inteligenta Artificiala, Editura Albastra, Cluj-Napoca, 2012

2.
ClujNapoca, 2003
3. http://www.ifcomputer.com/PrologCourse, Lecture on Prolog
4. http://www.lpa.co.uk, Logic Programming
5.

POP H.F., SERBAN G., Programare in Inteligenta Artificiala - Lisp si Prolog, Editura Albastra,

FIELD A., Functional Programming, Addison Wesley, New York, 1988.

6. WINSTON P.H., Lisp, Addison Wesley, New York, 2nd edition, 1984.

8.2 Seminar / laboratory

Teaching methods

Remarks

S1. Recursion

e Explanation
e Conversation
¢ Modelling

e C(Case studies

S2. Lists in Prolog

e Explanation
e Conversation
e Modelling

e C(Case studies

S3. Processing of heterogeneous lists in Prolog

e Explanation
e Conversation
e Modelling

e (Case studies

S4. Backtracking in Prolog

e Explanation
e Conversation
e Modelling

e (Case studies

S5. Lists processing in LISP

e Explanation
e Conversation
e Modelling

e (Case studies

S6. MAP functions in LISP

e Explanation
e Conversation
e Modelling

e (Case studies

S7.Recap

e Explanation
e Conversation
e Modelling

e C(Case studies

Lab 1: Recursive algorithms in Pseudocode

Explanation, dialogue,
testing data discussion,
case studies

Problem given at lab 1 and
submitted atlab 1

Lab 2: Lists in Prolog

Explanation, dialogue,
testing data discussion,
case studies

Problem given at lab 1 and
submitted at lab 2

Lab 3: Trees in Prolog. Lists management in
Prolog.

Explanation, dialogue,
testing data discussion,
case studies

Problem given at lab 2 and
submitted at lab 3

Lab 4: Backtracking in Prolog

Explanation, dialogue,
testing data discussion,
case studies

Problem given at lab 3 and
submitted at lab 4

Lab 4: Practical test in Prolog

Practical test

One hour

Lab 5: Recursive programming in Lisp

Explanation, dialogue,
testing data discussion,
case studies

Problem given at lab 4 and
submitted at lab 5

Lab 6: Recursive programming in Lisp

Explanation, dialogue,
testing data discussion,
case studies

Problem given at lab 5 and
submitted at lab 6

Lab 7: Using MAP functions in Lisp

Explanation, dialogue,
testing data discussion,
case studies

Problem given at lab 6 and
submitted at lab 7

Lab 7: Practical test in Lisp

Practical test

One hour

Bibliography

1. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatiiin

Inteligenta Artificiala, Editura Albastra, Cluj-Napoca, 2012
2. Product documentation: Gold Common Lisp 1.01 si 4.30, XLisp, Free Lisp.

w

4. http://www.swi-prolog.org

Product documentation: Turbo Prolog 2.0, Logic Explorer, Sicstus Prolog.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

e The course respects the IEEE and ACM Curricula Recommendations for Computer Science

studies;

e The course exists in the studying program of all major universities in Romania and abroad;
¢ The content of the course is concordant with partial competencies for possible occupations
from the Grid 1 - RNCIS.

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade
- know the basic principle
104 Course of the domain; Written test in Logic and 50%

- apply the course concepts
- problem solving

Functional Programming

10.5 Seminar/laboratory

- activity at seminaries

Evaluation of seminaries
activity

Bonus 10%

- be able to implement
course concepts and
algorithms

- apply techniques for
different classes of
programming languages

Programs documentation

0,
and delivery 2%
Practical test in Prolog 12.5%
(one hour at lab 4)
Practical test in Lisp (one 12.5%

hour atlab 7)

10.6 Minimum standard of performance

e Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the
subject, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish
certain connections and to use the knowledge in solving different problems.

e Inorder to pass the course, the following minimal criteria apply collectively: at least grade 5 (from a scale of 1 to
10) at the written test; at least grade 5 (from a scale of 1 to 10) computed as final grade average, attendance of at
least 5 seminars and at least 6 labs as scheduled during the semester.

11. Labels ODD (Sustainable Development Goals)?

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the
discipline and delete the others, including the general one for Sustainable Development - if not applicable. If no
label describes the discipline, delete them all and write ,,Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

Not applicable.

Date: Signature of course coordinator Signature of seminar coordinator
05.10.2025 Assist.Prof.Dr. Cristian-Paul Bara Assist.Prof.Dr. Cristian-Paul Bara
Date of approval: Signature of the head of department

Assoc.prof.phd. Adrian STERCA

