SYLLABUS

Databases 2

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computers and Information Technology
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Information Engineering
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	ne Database	Databases 2					iscipline code	MLE5174
2.2. Course coordinator Lect. dr. A					Andor Came	elia-Florina			
2.3. Seminar coordinator				Lect	t. dr. /	Andor Came	elia-Florina		
2.4. Year of study22.5. Semester42.6. Type of evaluation		on	E	2.7. Discip	line regime	Compulsory DD			

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 S/ 1 LP
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					
Evaluations					
Other activities:					
3.7. Total individual study hours 44					
3.8. Total hours per semester	100				
3.9. Number of ECTS credits	4				

4. Prerequisites (if necessary)

4.1. curriculum	 Data Structures and Algorithms Databases
4.2. competencies	Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Lecture room with a video projector			
5.2. for the seminar/lab activities	Lab room with a video projector, SQL Server, Visual Studio, MongoDB			
6.1. Spacific compotencies acquired 1				

6.1. Specific competencies acquired

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	•	Operating with the basics of mathematics, engineering and computer science Design and integration of information systems using technologies and programming environments
Transversal competencies	•	Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

6.2. Learning outcomes

Knowledge	 The graduate knows and understands the basic concepts, theories and methods of Computer and Information Technology and is able to use them appropriately in professional communication. The graduate knows the concepts related to software modeling and can implement functional and non-functional requirements described in specific documents for the analysis and design of software systems.
Skills	 The graduate is able to combine diverse information to formulate solutions and develop development ideas for new products and applications. The graduate is able to present and explain the methods, algorithms, paradigms and techniques used in different branches of computer science. The graduate is able to identify complex issues and examine related issues in order to design several solution and implement these solutions.
Responsibility and autonomy:	 The graduate has the necessary knowledge to design, analyze and manage databases. The graduate has the necessary knowledge for the use of computers, the development of software programs and applications, the processing of information. The graduate performs the testing and qualitative evaluation of the functional and non-functional characteristics of the information systems, based on specific criteria.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To get acquainted with the fundamental concepts concerning concurrency control, database recovery, database security, query optimization, distributed databases
7.2 Specific objective of the discipline	 To create ADO.NET applications with data-bound controls To handle concurrently running transactions using pessimistic and optimistic isolation levels To optimize SQL queries

8. Content

8.1 Course	Teaching methods	Remarks
1-3. Introduction. Transactions, Concurrency	Interactive presentation Conversation	
Control	Examples Explanation	

	Interactive presentation
	Conversation
4-5. Database Recovery	Examples
	Explanation
	Interactive presentation
6 Databasa Sagurity	Conversation
6. Database Security	Examples
	Explanation
	Interactive presentation
7-10. Evaluating Relational Operators. Query	Conversation
Optimization	Examples
	Explanation
	Interactive presentation
11-12. Distributed Databases	Conversation
11-12. Distributed Databases	Examples
	Explanation
	Interactive presentation
13. Parallel Databases. Data Stream Processing	Conversation
15. Farallel Databases. Data Stream Frocessing	Examples
	Explanation
	Interactive presentation
14. Problems	Conversation
14. [] UUICIIIS	Examples
	Explanation

Bibliography

DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003

GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009

KNUTH, D.E., Tratat de programare a calculatoarelor. Algoritmi fundamentali, Editura Tehnică, București, 1974

KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare, Editura Tehnică, București, 1976

LEVENE, M., LOIZOU, G., A Guided Tour of Relational Databases and Beyond, Springer, 1999

LITCHFIELD, D., ANLEY, C., HEASMAN, J., GRINDLAY, B., The Database Hacker's Handbook: Defending Database Servers, John Wiley & Sons, 2005 LIU, L., OZSU, M.T., Encyclopedia of Database Systems, Springer, 2009

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002

SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (7th Edition), McGraw-Hill, 2019

ULLMAN, J., WIDOM, J., A First Course in Database Systems, <u>http://infolab.stanford.edu/~ullman/fcdb.html</u>

*** Azure Stream Analytics - technical documentation, <u>https://azure.microsoft.com/en-us/services/stream-analytics/</u> Pramod J. Sadalage, Martin Fowler - NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence (1st Edition), Addison-Wesley Professional, 2012

Shannon Bradshaw, Eoin Brazil, Kristina Chodorow - MongoDB: The Definitive Guide (3rd Edition), O'Reilly Media, Inc, 2019

8.2 Seminar / laboratory	Teaching methods	Remarks
	Conversation	
	Problems	
1-2. ADO.NET / ADO.NET	Examples	
	Explanation	
	Conversation	
3. Transactions. Concurrency Control /	Problems	
Transactions. Concurrency Control	Examples	
	Explanation	
	Conversation	
4. Multiversioning / Transactions. Concurrency	Problems	
Control	Examples	
	Explanation	
	Conversation	
5. NoSQL Databases / NoSQL Databases	Problems	
5. NOSQL Databases / NOSQL Databases	Examples	
	Explanation	
	Conversation	
6. Problems / NoSQL Databases	Problems	
	Examples	

	Explanation	
7. Performance Tuning in SQL Server / Problems	Conversation Problems Examples Explanation	
Bibliography Course bibliography		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is oriented towards the problems a graduate student should solve at his / her future workplace. The acquired knowledge is considered as mandatory by software companies.
- The course is part of the academic curriculum of all major universities in Romania and abroad.
- The course structure follows the IEEE and ACM Recommendations concerning the Computer Science curriculum.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	 to know and apply the concepts described at the course to solve problems 	Written exam	50%
10.5 Seminar/laboratory	to be able to apply the	Practical exam	25%
	concepts from the course and seminar to create applications that manage databases, to manage concurrent transactions	Lab evaluation	25%
10.6 Minimum standard of performance			

• To pass, a student must get a grade of at least 5 (on a scale of 1 to 10) on the written exam, practical exam and lab evaluation.

 To attend the exam, a student must have at least 5 seminar attendances and at least 6 laboratory attendances, according to the Computer Science Department's decision: <u>https://www.cs.ubbcluj.ro/wpcontent/uploads/Hotarare-CDI-29.04.2020.pdf</u>

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.

Date: 12.04.2025 Signature of course coordinator

Signature of seminar coordinator

Broken

Date of approval:

Signature of the head of department

Assoc.prof.phd. Adrian STERCA