SYLLABUS

Databases 1

University year 2025 - 2026

1. Information regarding the programme

1.1. Higher education institution	Babeș Bolyai University, Cluj Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computers and information technology
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Information Engineering
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the discipline		Database	es 1			Discipline code	MLE5233
2.2. Course coordinator			Lect. PhD. Emilia-Loredana Pop				
2.3. Seminar coordinator			Lect. PhD. Emilia	a-Lore	dana Pop		
2.4. Year of	2	2.5. Semester	3	2.6. Type of	Е	2.7. Discipline	Compulsory
study			-	evaluation		regime	e ep uno e r j

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual stud	dy (ID)	and self-study acti	vities	(SA)	hours
Learning using manual, course support, bibliography, course notes (SA)					13
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					10
Evaluations					6
Other activities:					
3.7. Total individual study hours 44					
3.8. Total hours per semester 100					
3.9. Number of ECTS credits 4					

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2.	Average programming skills in a high level programming language
competencies	

5. Conditions (if necessary)

5.1. for the course	Lecture room with a video projector
5.2. for the seminar /lab	Seminar / Lab room with SQL Server, Visual Studio and video projector
activities	

6.1. Specific competencies acquired

Γ

Professional/essential competencies	 Operating with the basics of mathematics, engineering and computer science Design and integration of information systems using technologies and programming environments
Transversal competencies	 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation Identifying, describing and conducting processes in the project management field, undertaking different team roles and clearly and concisely describing own profesional results, verbally or in writing

6.2. Learning outcomes

	0
Knowledge	 The graduate has the necessary knowledge for the use of computers, the development of software programs and applications, the processing of information. The graduate has the necessary knowledge to select and use the appropriate training procedures to facilitate the process of assimilation of knowledge. The graduate has the ability to develop, design and create new applications, systems or products using best practices in the field of computer science.
Skills	 The student is able to develop systems and applications for the maintenance and use of hardware, software and communications systems. The graduate is able to present and explain the methods, algorithms, paradigms and techniques used in different branches of computer science. The graduate is able to combine diverse information to formulate solutions and develop development ideas for new products and applications. The graduate is able to identify complex issues and examine related issues in order to design several solution and implement these solutions.
Responsibility and autonomy:	 The graduate has the necessary knowledge to design, analyze and manage databases. The graduate has the necessary knowledge to review the literature and use international databases and international digital research libraries. The graduate has the ability to create automated tests of different levels of granularity to ensure the quality of developed systems.

7.1 General objective of	• To get acquainted with the fundamental concepts concerning databases
the discipline	• To gain a thorough understanding of the relational data model
7.2 Specific objective of	• To manage (create, modify, remove) relational databases in SQL Server
the discipline	 To analyze data using complex SQL queries
	To optimize SQL queries

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Databases	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
2. The Relational Data Model	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
3. SQL Queries	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
4. Functional Dependencies	Interactive presentation	
	Conversation	
	Examples	
5. Normal Forms	Explanation	
5. Inormal Forms	Interactive presentation Conversation	
	Examples	
	Explanation	
6. The Relational Algebra	Interactive presentation	
o. The Relational Algebra	Conversation	
	Examples	
	Explanation	
7. The Physical Structure of Databases	Interactive presentation	
·	Conversation	
	Examples	
	Explanation	
8-9. Indexes. Trees. Hash files	Interactive presentation	
	Conversation	
	Examples	
	Explanation	
10. Evaluating the Relational Algebra	Interactive presentation	
Operators	Conversation	
	Examples	
11. Company for al Mardalian a	Explanation	
11. Conceptual Modeling	Interactive presentation Conversation	
	Examples Explanation	
12. Object Oriented Databases, Data	Interactive presentation	
Streams	Conversation	
Su camp	Examples	
	Explanation	
13. Transactions, Concurrency Control	Interactive presentation	
	Conversation	

	Examples Explanation
14. Problems	Interactive presentation
	Conversation
	Examples
	Explanation

Bibliography

ABADI, D.J., CARNEY, D., CETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., ZDONIK, S.B., Aurora: A New Model and Architecture for Data Stream Management, The VLDB Journal, 12(2):120–139, 2003

ARASU, A., BABCOCK, B., BABU, S., DATAR, M., ITO, K., MOTWANI, R., NISHIZAWA, I., SRIVASTAVA, U., THOMAS, D., VARMA, R., WIDOM, J., STREAM: The Stanford Stream Data Manager, IEEE Data Engineering Bulletin 26(1): 19-26, 2003

ARASU, A., CHERNIACK, M., GALVEZ, E., MAIER, D., MASKEY, A.S., RYVKINA, E., STONEBREAKER, M., TIBBETTS, R., Linear Road: A Stream Data Management Benchmark, Proceedings of The Thirtieth International Conference on Very Large Data Bases (VLDB 2004), 480-491, 2004

BAGUI, S., EARP, R., Database Design Using Entity-Relationship Diagrams (Foundations of Database Design) – 2nd edition, CRC Press, Taylor & Francis Group, 2011

CAPTAIN, F.A., Six-Step Relational Database Design: A step by step approach to relational database design and development -2^{nd} edition, Createspace Independent Publishing Platform, 2013

CHURCHER, C., Beginning Database Design - From Novice to Professional, Apress, 2007

CORONEL, C., MORRIS, S., Database Systems Design, Implementation, and Management, Cengage Learning, 2016

DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003

DATE, C.J., Database Design and Relational Theory: Normal Forms and All That Jazz – 2nd edition, Apress, 2019

DAVIDSON, L., MOSS, J., Pro SQL Server Relational Database Design and Implementation, Best Practices for Scalability and Performance. Apress, 2021

DEBARROS, A., Practical SQL: A Beginner's Guide to Storytelling with Data, Estadisticos e-Books & Paper, 2018

GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book (2nd Edition), Pearson Education, 2009

GRIPAY, Y., LAFOREST, F., LESUEUR, F., LUMINEAU, N., PETIT, J.-M., SCUTURICI, V.-M., SEBAHI, S., SURDU, S., ColisTrack: Testbed for a Pervasive Environment Management System, Proceedings of The 15th International Conference on Extending Database Technology (EDBT 2012), 574-577, 2012

HALPIN, T. A., MORGAN, T., Information modeling and Relational Databases – 2nd edition, Burlington,

MA: Morgan Kaufmann Publishers, 2008

KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare, Editura Tehnică, București, 1976

LEVENE, M., LOIZOU, G., A Guided Tour of Relational Databases and Beyond, Springer, 1999

LIU, L., OZSU, M.T., Encyclopedia of Database Systems, Springer, 2009

OPPEL, A.J., Databases A Beginner's Guide, McGraw-Hill Education, 2009

PETKOVIC, D., Microsoft SQL Server 2019: A Beginner's Guide - 7th edition, McGraw-Hill, 2019

RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (3rd Edition), McGraw-Hill, 2002

SILBERSCHATZ, A., KORTH, H., SUDARSHAN, S., Database System Concepts (6th Edition), McGraw-Hill, 2011

SHIELD, W., SQL QuickStart Guide: The Simplified Beginner's Guide to Managing, Analyzing, and Manipulating Data with SQL, ClydeBank Media, 2019

ŢÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, versiunea 2013-2014

ŢÂMBULEA, L., Baze de date, Litografiat, Cluj-Napoca, 2003

ULLMAN, J., WIDOM, J., A First Course in Database Systems, <u>http://infolab.stanford.edu/~ullman/fcdb.html</u>

*** Azure Stream Analytics - technical documentation, <u>https://azure.microsoft.com/en-us/services/stream-analytics/</u>

<u>allalytics/</u>		
8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar	Problems solving	
1. SQL - Data Definition Language	Conversation	
	Problems	
	Examples	
	Explanation	
2. SQL - Data Manipulation Language	Conversation	
	Problems	
	Examples	
	Explanation	
3. Stored Procedures, Dynamic SQL,	Conversation	
Cursors	Problems	
	Examples	
	Explanation	
4. Functions, Views, Triggers	Conversation	
	Problems	
	Examples	
	Explanation	
5. Indexes (I)	Conversation	
	Problems	
	Examples	
	Explanation	

6. Indexes (II)	Conversation	
	Problems	
	Examples	
	Explanation	
7. Problems	Conversation	
	Problems	
	Examples	
	Explanation	
Laboratory	Teaching programs in which	
	real life problems can be	
	solved	
1-2. Database Design	Conversation	
	Problems	
	Examples	
	Explanation	
3-4. SQL Queries	Conversation	
	Problems	
	Examples	
	Explanation	
5. Altering the Database	Conversation	
	Problems	
	Examples	
	Explanation	
6-7. Indexes	Conversation	
	Problems	
	Examples	
	Explanation	
Bibliography		
Course bibliography		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course is oriented towards the problems a graduate student should solve at his / her future. workplace. The acquired knowledge is considered as mandatory by software companies.
- The course is part of the academic curriculum of all major universities in Romania and abroad.
- The course structure follows the IEEE and ACM Recommendations concerning the Computer Science curriculum.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	 to know and apply the concepts described at the course to solve Databases problems 	written exam	50%

10.5 Seminar/laboratory	• to be able to apply	lab evaluation	25%	
	the concepts from	practical exam	25%	
	the course and			
	seminar to design /			
	alter a database, to			
	analyze data with			
	SQL queries, to			
	optimize queries			
10.6 Minimum standard of performance				
• To pass, a student must get a grade of at least 5 (on a scale of 1 to 10) on the written exam, practical				
exam and lab evaluation.				
• To attend the exam, a student must have at least 6 laboratory attendances and at least 5 seminar				

attendances, according to the Computer Science Department's decision.

11. Labels ODD (Sustainable Development Goals)¹

Not applicable.

Date: 28.04.2025	Signature of course coordinator	Signature of seminar coordinator
	Lect. PhD. Emilia-Loredana Pop	Lect. PhD. Emilia-Loredana Pop

Date of approval:

...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

¹ Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.