SYLLABUS

Probability Theory and Statistics

University year 2025-2026

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Information Engineering
1.7 Form of education	Full-Time

2. Information regarding the discipline

2.1 Name of the disc	iplir	ie	Probability Theory and Statistics			Discipline code		MLE0090		
2.2 Course coordinator Prof. Sanda Micula, PhD. Habil.										
2.3 Seminar coordina	ator			Pro	f. S	anda Micula, PhD. Habil.				
2.4. Year of study	2	2.5 Se	mes	ter	3	2.6. Type of evaluation	E	2.7 Type of discipline	DF C	ompulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	3	3.3 seminar/laboratory	1 lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	42	3.6 seminar/laboratory	14
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					9
Evaluations					20
Other activities:					-

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis
	Algebra
4.2. competencies	Logical thinking
	 Average logical programming skills

5. Conditions (if necessary)

5.1. for the course	 Lecture room with large blackboard and video projector
5.2. for the seminar /lab activities	For lab: Laboratory with computers having Matlab installed

6. Specific competencies acquired

Professional competencies	C1.1 Recognizing and describing specific concepts to calculability, complexity, programming paradigms and modeling of computing and communication systems C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and the functioning of hardware, software and communication systems
P SO	C1.3 Building models for various components of computing systems C1.5 Providing theoretical background for the characteristics of the designed systems
Transversal competencies	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire basic knowledge of Probability Theory and Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various probabilistic and statistical models Ability to perform statistical analysis of data
	Ability to use statistical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
 Experiments, events, field of events, operations with events. Axiomatic definition of probability. Poincaré's formula. Classical definition of probability. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Conditional probability. Independent events. Total probability formula. Classical probabilistic models (Binomial, Hypergeometric, Poisson, Pascal, Geometric). 	Interactive exposureExplanationConversationDidactical demonstration	
 Random variables and random vectors. Discrete random variables. Probability distribution function. Cumulative distribution function. Properties, examples. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Discrete probability laws (Bernoulli, Binomial, Hypergeometric, Poisson, Negative Binomial, Geometric). Discrete random vectors. Operations with discrete random variables. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Continuous random variables. Probability density function. Continuous probability laws (Uniform, Normal, Gamma, Exponential, Chisquare, Student, Fisher). Independent random variables. Functions of continuous random variables.	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Numerical characteristics of random variables. Expectation. Variance and standard deviation. Median. Moments (initial, central, absolute). 	 Interactive exposure Explanation Conversation Didactical demonstration 	

7. Quantiles. Covariance and correlation coefficient. Inequalities (Markov, Chebyshev). Central limit theorem.	 Interactive exposure Explanation Conversation Didactical demonstration
8. Descriptive statistics. Data collection. Graphical display of data. Frequency distribution, histograms, stem-and-leaf plots. Parameters of a statistical distribution. Measures of central tendency.	 Interactive exposure Explanation Conversation Didactical demonstration
 Measures of variation. Correlation and regression. Linear regression, least squares estimation. 	 Interactive exposure Explanation Conversation Didactical demonstration
10. Statistical inference. Sample theory. Samples. Sample functions (sample mean, sample variance, sample moments). Estimation theory, basic notions. Confidence intervals for estimating the population mean and the population variance.	 Interactive exposure Explanation Conversation Didactical demonstration
11. Confidence intervals for comparing two population means and two population variances. Hypothesis testing, basic notions. Rejection region. Type I errors. Significance testing and P-values.	 Interactive exposure Explanation Conversation Didactical demosntration
12. Tests for the parameters of one population Tests for comparing the parameters of two populations. Examples. Robust tests. Summary of hypothesis testing.	 Interactive exposure Explanation Conversation Didactical demonstration
13. Properties of point estimators. Unbiased and minimum variance estimators. Fisher's information. Absolutely correct estimators. The Rao-Cramer inequality. Efficient estimators. Methods of estimation (method of moments, method of maximum likelihood). Examples.	 Interactive exposure Explanation Conversation Didactical demonstration
14. Type II errors and the power of a test. Most powerful tests and the Neyman-Pearson lemma. Uniformly most powerful tests. Examples.	 Interactive exposure Explanation Conversation Didactical demonstration

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 4. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 5. Feller, W., An introduction to probability theory and its applications, Vol. 1, 3rd edition, WSE Wiley, New York, 2008.
- 6. DeGroot, M. H., Schervish, M. J., Probability and Statistics, Addison-Wesley, Boston, 2012.

8.2 Laboratory	Teaching methods	Remarks
1. Introduction to Matlab.	 Interactive exposure 	The lab is
	 Explanation 	structured as 2
	 Conversation 	hours per week,
	 Individual and group work 	every other
		week
2. Estimating probability by computer simulations.	 Interactive exposure 	

	Explanation
	Conversation
	Individual and group work
2 Discrete modern with the DDF and CDF	
3. Discrete random variables. PDF and CDF.	Interactive exposure
	Explanation
	 Conversation
	 Individual and group work
4. Continuous random variables. PDF, CDF and	Interactive exposure
Inverse CDF.	 Synthesis
	 Conversation
	 Individual and group work
5. Descriptive Statistics. Statistical measures.	Interactive exposure
Correlation and regression.	Explanation
	Conversation
	 Individual and group work
6. Confidence intervals and tests for the mean and	Interactive exposure
variance.	Explanation
	 Conversation
	Individual and group work
7. Confidence intervals and tests for the	Interactive exposure
difference of means and ratio of variances.	Explanation
	 Conversation
	Individual work

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Information Engineering students;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	- acquire the basic principles in Probability Theory and Mathematical Statistics; - be able to apply correctly the course concepts on various applications - be able to apply course concepts and techniques on practical problems	Written exam - participation in discussing and solving problems throughout the semester - additional documentation - solving bonus problems	70% 15%
	- problem solving		

10.5 Lab activities	 be able to implement course concepts and algorithms in Matlab be able to solve numerical statistical problems in Matlab 	 participation in discussing and solving problems throughout the semester individual presentation of solutions 	15%			
10.7 Minimum performance standards						
➤ A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> of the three activities mentioned above (written						

11. Labels ODD (Sustainable Development Goals)¹

test, participation, lab evaluation)

General label for Sustainable Development							
							9 MOUSTRY, AND VATION AND INTRASTRUCTURE

Date Signature of course coordinator Signature of seminar coordinator 29.04.2025 Prof. Sanda Micula, PhD. Habil. Prof. Sanda Micula, PhD. Habil.

Date of approval Signature of the head of department

Prof. dr. Andrei Mărcuș

¹ Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.