SYLLABUS

DIFFERENTIAL EQUATIONS

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babes-Bolyai University Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Mathematics
1.4. Field of study	Computers and Information Technology
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Information Engineering
1.7. Form of education	Full-time

2. Information regarding the discipline

2.1. Name of the di	scipli	ne Differenti	al Eq	quations			Discipline code	MLE0009
2.2. Course coordinator				As	soc. P	rof. PhD. Marcel-Adrian S	Serban	
2.3. Seminar coord	inato	r			As	soc. P	rof. PhD. Marcel-Adrian S	Serban
2.4. Year of study	2	2.5. Semester	3	2.6. Type of evaluati	on	Е	2.7. Discipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	3	3.3 laboratory	1
3.4. Total hours in the curriculum	56	of which: 3.5 course	42	3.6 laboratory	14
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support,	bibliograp	ohy, course notes (SA)			15
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					20
Evaluations					9
Other activities:					
3.7. Total individual study hours 69					
3.8. Total hours per semester 125					
3.9. Number of ECTS credits 5					

4. Prerequisites (if necessary)

TIT TOT OGGISTOS (II II	e c c c c c c c c c c c c c c c c c c c
4.1. curriculum	Mathematical Analysis (I-II)
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired ¹

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	 C1.2 Correct explanation and interpretation of mathematical concepts, using specific language C 2.4 Comparative analysis of the results obtained by solving problems with pre-existing data C4.2 Explain and interpret mathematical models
Transversal competencies	 CT 1. Applying the rules of rigorous and efficient work, manifesting responsible attitudes towards the scientific and didactic field, for the optimal and creative capitalization of one's own potential in specific situations, respecting the principles and norms of professional ethics. CT 3. Efficient use of information sources and resources of communication and assisted professional training, both in Romanian and in a language of international circulation

6.2. Learning outcomes

Knowledge	 The student knows: Specific concepts related to mathematics disciplines necessary for completing assignments. Fundamental concepts of differential equations theory and dynamical systems. Methods for creating and analyzing mathematical models from different fields of science modeled by differential equations.
Skills	 The student is able to: Construct clear and well-supported mathematical arguments to explain problems, topics, and mathematical ideas in writing. Demonstrate theorems using mathematical language and to present these results both orally and in writing.
Responsibility and autonomy:	 The student has the ability to Independently explore certain mathematical content, relying on already acquired ideas and tools, to expand their knowledge. Independently extend already acquired mathematical ideas and arguments to a mathematical topic that has not been previously studied.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	to present the main concepts and results in differential equations theory
7.2 Specific objective of the discipline	 basic methods for solvable differential equations main concepts and results concerning the qualitative theory of differential equations basic problems related to differential equations mathematical models given by differential equations

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Differential Equations	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
2. Analysis in Banach spaces. Contraction	Interactive exposure	
principle. Abstract data dependence principle	Explanation	
	Conversation	
	Didactical demonstration	
3. The Cauchy problem. The existence and	Interactive exposure	
uniqueness theorem in the space	Explanation	
	Conversation	
	Didactical demonstration	
4. The Cauchy problem. The existence and	Interactive exposure	
uniqueness theorem in the ball	Explanation	
	Conversation	
	Didactical demonstration	
5. Mathematical models governed by	Interactive exposure	
differential equations (I)	Explanation	
	Conversation	
	Didactical demonstration	
6. Mathematical models governed by	Interactive exposure	
differential equations (II)	Explanation	
	Conversation	
	Didactical demonstration	
7. Linear differential equations	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
8. Linear differential equations with constant	Interactive exposure	
coefficients	Explanation	
	Conversation	
	Didactical demonstration	
9. Systems of linear differential equations of	Interactive exposure	
first order	Explanation	
	Conversation	
	Didactical demonstration	
10. Systems of linear differential equations	Interactive exposure	
with constant coefficients	Explanation	
	Conversation	
	Didactical demonstration	
11. Dynamical systems generated by	Interactive exposure	
autonomous scalar differential equations	Explanation	
	Conversation	
10.5	Didactical demonstration	
12. Dynamical systems generated by planar	Interactive exposure	
system of differential equations	Explanation	
	Conversation	
42.4	Didactical demonstration	
13. Applications of dynamical systems theory	Interactive exposure	
to some models	Explanation	
	Conversation	
	Didactical demonstration	
14. Approximating methods for the Cauchy	Interactive exposure	
problem solutions	Explanation	
	Conversation	
	Didactical demonstration	

- 1. I. A. Rus, Ecuații diferențiale, ecuații integrale si sisteme dinamice, Transilvania Press, Cluj-Napoca, 1996.
- 2. M.A. Şerban, Ecuații și sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.
- 3. S.L. Campbell, R. Haberman, Introduction to Differential Equations with Dynamical Systems, Princeton Univ. Press, 2008.

8.3 Laboratory	Teaching methods	Remarks
1. Introduction to MAPLE	Exercise	
	Explanation	
	Individual study	
2. Solving differential equations with MAPLE	Exercise	
	Explanation	
	Individual study	
3. Mathematical models given by differential	Exercise	
equations	Explanation	
	Individual study	
4. Systems of differential equations	Exercise	
	Explanation	
	Individual study	
5. Higher order linear differential equations	Exercise	
	Explanation	
	Individual study	
6. Equilibrium points. Stability	Exercise	
	Explanation	
	Individual study	
7. Laboratory test	Exercise	
	Individual study	

Bibliography

- 1. S. Lynch, Dynamical Systems with Applications using MAPLE, Birkauser, 2001.
- 2. M.A. Şerban, Ecuații și sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The syllabus of this course is focused on the differential equations theory, as a basis for a better understanding of the partial differential equations and mathematical models. Moreover, the course propose the following three important directions:
 - 1. the understanding of the main concepts and methods in the classical theory of differential equations;
 - 2. the use of Banach's contraction principle in the qualitative theory of differential equations
 - 3. the applications of the differential equations theory to real world problems.
- The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade	
	Knowledge of concepts and			
10.4 Course	basic results			
10.4 Course	Ability to justify by proofs	Final written exam	80%	
	theoretical results	Tillal Wilteen Caalii		
	Ability to apply concepts			
10.5 Seminar/laboratory	and results acquired	Laboratory practical test	20%	
	during the course in	Laboratory practical test		
	Differential Equations in			

problem solving using mathematical software	
10.6 Minimum standard of parformance	

- Fulfillment of the laboratory attendance criterion (90% laboratory attendance)
- Successful passing of the exam is conditioned by the final grade that must be at least 5.

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: Signature of course coordinator Signature of seminar coordinator 11.04.2025

Assoc. Prof. PhD. Marcel-Adrian ŞERBAN Assoc. Prof. PhD. Marcel-Adrian ŞERBAN

Date of approval: Signature of the head of department 25.04.2025

Prof. Dr. Andrei-Dorin MĂRCUŞ

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for Sustainable Development - if not applicable. If no label describes the discipline, delete them all and write "Not applicable.".