SYLLABUS

Data Structures and basic algorithms

University year 2025- 2026

1. Information regarding the programme

1.1. Higher education institution	Babeş – Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computers and information technology
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Information Engineering
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	cipli	ne Data Stru	Data Structures and basic algorithms					Discipline code	MLE5232
2.2. Course coordinator					Lect. PhD. Hotea Diana – Lucia				
2.3. Seminar coordinator				Le	ct. PhI). Hotea l	Diana – Lucia		
2.4. Year of study12.5. Semester22.6. Type of evaluation				on	Е	2.7. Dis	cipline regime	Compulsory	

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1S + 1LP
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)					20
Additional documentation (in libraries, on electronic platforms, field documentation)					4
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					5
Evaluations					5
Other activities:					
3.7. Total individual study hours69					
3.8. Total hours per semester	125				
3.9. Number of ECTS credits 5					

4. Prerequisites (if necessary)

4.1. curriculum	Computer programming and programming languages
4.2. competencies	Medium programming skills

5. Conditions (if necessary)

bi denations (in necessary)					
5.1. for the course	Class room with projector				
5.2. for the seminar /lab activities					

6.1. Specific competencies acquired

Professional/essential competencies	•	Operating with the basics of mathematics, engineering and computer science Problem solving using specific computer science and computer engineering tools
Transversal competencies	•	Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge

6.2. Learning outcomes

Knowledge	 The student knows: The graduate knows and understands the basic concepts, theories and methods of Computer and Information Technology and is able to use them appropriately in professional communication. The graduate has the necessary knowledge for the use of computers, the development of software programs and applications, the processing of information.
Skills	 The student is able to: The graduate is able to design / implement hardware, software and communications components using design methods, languages, algorithms, data structures, protocols and technologies, and evaluate their functional and non-functional characteristics based on metrics.
Responsibility and autonomy:	 The student has the ability to work independently to obtain: The graduate is able to combine diverse information to formulate solutions and develop development ideas for new products and applications.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees)
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content

8.1 Course	Teaching methods	Remarks
1. Data structures. Abstract Data Types.		
Algorithm analysis	- Exposure	
 Abstract Data Types and Data 	- Description	
Structures	- Examples	
 Pseudocode conventions 	- Didactical demonstration	
Complexities		
2. Arrays. Iterators	- Exposure	
Dynamic array	- Description	
Amortized complexity analysis	- Conversation	
Interface of an iterator	- Didactical demonstration	
3. Linked Lists		
Singly linked list: representation and	- Exposure	
operations	- Description	
 Doubly linked list: representation and 	- Conversation	
operations	- Didactical demonstration	
 Iterator for linked lists 	- Case study	
4. Abstract Data Types	<u> </u>	
ADT Set: description, domain,		
• ADT set: description, domain, interface and possible representations	- Exposure	
	- Description	
ADT Map: description, domain, interface and possible representations	- Conversation	
	- Didactical demonstration	
ADT Matrix: description, domain, interface and a particular representations		
interface and possible representations		
5. Linked Lists II	- Exposure	
• Sorted linked lists: representation and	- Description	
operations	- Conversation	
Linked lists on arrays: representation	- Didactical demonstration	
and operations		
6. Abstract Data Types II		
ADT List: description, domain,	- Exposure	
interface and possible representations	- Description	
ADT Stack: description, domain,	- Conversation	
interface and possible representations	- Didactical demonstration	
ADT Queue: description, domain,	- Case studies	
interface and possible representations	Guse studies	
7. Hash Table	- Exposure	
Direct address tables	- Description	
Hash tables: description, properties	- Conversation	
Collision resolution through separate	- Didactical demonstration	
chaining		
8. Hash Table II	- Exposure	
Collision resolution through coalesced	- Description	
chaining	- Conversation	
Collision resolution through open	- Didactical demonstration	
addressing		
9. Trees. Binary Trees		
 Concepts related to trees 		
Applications of trees	- Exposure	
Possible representations	- Description	
Tree traversals	- Conversation	
• Description and properties of binary	- Didactical demonstration	
trees		
 Domain and interface of ADT Binary 		
2 official and interface of fib i billing	1	1

 10. Binary Trees II Possible representations of ADT Binary Tree Binary tree traversals: recursive/non- recursive algorithms 	 Exposure Description Conversation Didactical demonstration 	
 11. Binary Heap Definition, representations, sepcific operations HeapSort 12. ADT Priority Queue Description, domain and interface Possible representations Implementation on heap 	 Exposure Description Conversation Didactical demonstration Case studies Exposure Description Conversation Didactical demonstration 	
 13. Balanced Binary Search Trees Binary Search Trees AVL Trees 	 Exposure Description Conversation Didactical demonstration Conversation 	
14. Applications of the studied DS	- Debate	
 Bibliography T. Cormen, C. Leiserson, R. Rivest, C. Stei Clifford A. Shaffer, A Practical Introducti N. Karumanchi: Data structures and algo Narasimha Karumanchi, Data Structures Fifth Edition, 2016 M. A. Weiss: Data structures and algorith 	on to Data Structures and Algorithm A prithms made easy, CareerMonk Publi s and Algorithms Made Easy: Data Str	Analysis, Third Edition, 2010 cations, 2016 uctures and Algorithmic Puzzles,
8.2 Laboratory	Teaching methods	Remarks
		Laboratory is structured as 2 hour classes every second week. Laboratory problems assigned at a lab have to be presented in the next lab (excepting the first lab assignemnt). Every laboratory focuses on a given data structure. Students will receive a container
		(ADT) that has to be implemented using the given data structure.
Lab1. Discussion about solving lab problems	- Exposure - Examples - Conversation	
Lab1. Discussion about solving lab problems Lab 2. Dynamic array	 Examples Conversation Exposure Examples Conversation 	
	 Examples Conversation Exposure Examples 	using the given data structure.
Lab 2. Dynamic array	 Examples Conversation Exposure Examples Conversation Exposure Exposure Examples 	using the given data structure.
Lab 2. Dynamic array Lab 3. Linked lists with dynamic allocation	 Examples Conversation Exposure Examples Conversation Exposure Examples Conversation Exposure Examples Conversation Exposure Examples 	using the given data structure.
Lab 2. Dynamic array Lab 3. Linked lists with dynamic allocation Lab 4. Linked lists on array	 Examples Conversation Exposure Examples Conversation Exposure Examples Conversation Exposure Examples Conversation Examples Conversation Examples Examples Conversation Exposure Examples Conversation 	using the given data structure.

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016
- 5. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

.3 Seminar	Teaching methods	Remarks
		Seminar is structured as 2 hour classes every second week.
1. ADT Bag with generic elements. Representations and implementation on an array. Iterator for ADT Bag	 Exposure Conversation Examples Debate 	
2. Complexities	 Exposure Conversation Examples Debate 	
 Bucket sort, Lexicographic sort, radix sort. Merging two sorted singly linked lists. 	 Exposure Conversation Examples Debate 	
4. Sorted MultiMap – representation and implementation on a singly linked list	 Exposure Conversation Examples Debate 	
5. Hash tables. Collision resolution through coalesced chaining	 Exposure Conversation Examples Debate 	
6. Binary trees.	 Exposure Conversation Examples Debate 	
7. Problems solved with heaps	 Exposure Conversation Examples Debate 	

Bibliography

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009

2. Clifford A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Third Edition, 2010

3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016

- 4. Narasimha Karumanchi, Data Structures and Algorithms Made Easy: Data Structures and Algorithmic Puzzles, Fifth Edition, 2016
- 5. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade			
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the concepts 	Written evalution (in the exam session): written exam	70%			
10.5 Lab activities	 C++ implementation of the concepts and algorithms presented at the lectures Lab assignment documentation Respecting the deadlines for lab presentation 	Correctness of the implementation and documentation (representation, specifications, algorithms, complexities).	30%			
10.6 Seminar activity	Activity during the seminar	Evaluation of seminar activity – at most 0.5 bonus points awarded for activity during the seminars.				
10.7 Minimum standard of performance						

• Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.

- For participating at the written exam, a student must have at least 6 lab attendances and 5 seminar attendances.
- For successfully passing the examination, a student must have at least 5 as a final grade.

11. Labels ODD (Sustainable Development Goals)¹

Not applicable.

¹ Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.

Date: 15.04.2025 Signature of course coordinator Lect. PhD. Diana – Lucia HOTEA Signature of seminar coordinator

Lect. PhD. Diana – Lucia HOTEA

Date of approval:

...

Signature of the head of department Assoc. prof. PhD. Adrian STERCA