
SYLLABUS

Computer programming and programming languages

University year 2025-2026

1. Information regarding the programme
1.1. Higher education institution Babes-Bolyai University
1.2. Faculty Faculty of Mathematics and Computer Science
1.3. Department Department of Computer Science
1.4. Field of study Computers and Information Technology
1.5. Study cycle Bachelor
1.6. Study programme/Qualification Information Enginnering
1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Computer programming and programming
languages Discipline code MLE5171

2.2. Course coordinator Asist. dr. Anamaria Briciu
2.3. Seminar coordinator Asist. dr. Anamaria Briciu
2.4. Year of study 1 2.5. Semester 1 2.6. Type of evaluation C 2.7. Discipline regime Compulsory

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)
4.1. curriculum
4.2. competencies

5. Conditions (if necessary)
5.1. for the course Projector
5.2. for the seminar /lab activities Computers, Python programming language and environment
6. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 5 of which: 3.2 course 2 3.3
seminar/laboratory/project

1 S
2 LP

3.4. Total hours in the curriculum 70 of which: 3.5 course 28 3.6
seminar/laboratory/project 42

Time allotment for individual study (ID) and self-study activities (SA) hours
Learning using manual, course support, bibliography, course notes (SA) 18
Additional documentation (in libraries, on electronic platforms, field documentation) 18
Preparation for seminars/labs, homework, papers, portfolios and essays 14
Tutorship 12
Evaluations 18
Other activities:
3.7. Total individual study hours 80
3.8. Total hours per semester 150
3.9. Number of ECTS credits 6

Pr
of
es
si
on
al
/e
ss
en
ti
al

co
m
pe
te
nc
ie
s

C1.1 Definition and description of programming paradigms and of language specific mechanisms, as well as
identification of syntactic and semantic differences.
C1.2 Description of existing software applications, on different levels of abstraction (architecture, classes,
methods) using adequate basic knowledge.
C1.3 Elaboration of adequate source code and testing of components in a well-known programming
language, based on given specifications.
C1.4 Testing applications based on testing plans.
C1.5 Development of units of programs and corresponding documentation

Tr
an
sv
er
sa
l

co
m
pe
te
nc
ie
s TC1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the

scientific and didactic fields, underlying the individual potential and respecting professional and ethical
principles.
TC2 Use of efficient methods and techniques for learning, information, research and development of
abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication
in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

 To introduce the basic concepts of software engineering (design,
implementation and maintenance) and to learn Python programming language

7.2 Specific objective of the
discipline

 To introduce the key concepts of programming
 To introduce the basic concepts of software engineering
 To gain understanding of basic software tools used in development of

programs
 To learn Python programming language and tools to develop, run, test and

debug programs
 To acquire and improve a programming style according to the best practical

recommendations

8. Content
8.1 Course Teaching methods Remarks
1. Introduction to software development
processes
 What is programming: algorithm,

program, basic elements of the Python
language, Python interpreter, basic roles
in software engineering

 How to write programs: problem
statement, requirements, feature driven
development process

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

2. Procedural programming
 Compound types: list, tuple, dictionary
 Functions: test cases, definition, variable

scope, calling, parameter passing
 Test-driven development (TDD),

refactoring

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

3. Modular programming
 What is a module: Python module

definition, variable scope in a module,
packages, standard module libraries,
deployment

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

 PyCharm
4. User defined types
 How to define new data types:

encapsulation, data hiding in Python,
guidelines

 Introduction to object-oriented
programming

 Exceptions

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

5. Object-oriented programming
 Abstract data types
 Implementation of classes in Python
 Objects and classes: classes, objects, fields,

methods, Python scope and namespace

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

6. Software design guidelines
 Layered architecture: UI layer, application
layer, domain layer, infrastructure layer
 How to organize source code:

responsibilities, single responsibility
principle, separation of concerns,
dependency, coupling, cohesion

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

7. Program testing and inspection
 Testing methods: exhaustive testing, black

box testing, white box testing
 Automated testing, TDD
 File operations in Python

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

8. Recursion
 Notion of recursion
 Direct and indirect recursion
 Examples
 Computational complexity

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

9. Search algorithms
 Problem definition
 Search methods: sequential, binary
 Complexity of algorithms

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

10. Sorting algorithms
 Problem definition
 Sort methods: Bubble Sort, Selection Sort,

Insertion Sort, Quick Sort
 Complexity of algorithms

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

11. Problem solving methods (I)
 General presentation of the Backtracking,

Divide & Conquer methods
 Algorithms and complexity
 Examples

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

12. Problem solving methods (II)
 General presentation of the Greedy and

Dynamic Programming methods
 Algorithms and complexity
 Examples

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

13. Revision
 Revision of most important topics covered

by the course

 Interactive exposure
 Explanation
 Conversation
 Examples
 Didactical demonstration

14. Evaluation
Bibliography

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, Third Edition, 2017.
2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.

3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002. http://en.wikipedia.org/wiki/Test-
driven_development
4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.
http://refactoring.com/catalog/index.html
5. The Python Programming Language - https://www.python.org/
6. The Python Standard Library - https://docs.python.org/3/library/
7. The Python Tutorial - https://docs.python.org/3/tutorial/
8.2 Laboratory Teaching methods Remarks
1. Simple Python programs

 Interactive exposure
 Explanation
 Conversation
 Didactical demonstration

2. Procedural Programming
3. Modular Programming
4. Feature-driven software development
5. Abstract data types
6. Design principles
7. Object-oriented programming
8. Program design. Layered architecture
9. Inspection and testing
10. Recursion. Complexity of algorithms
11. Search and sorting algorithms
12. Problem solving methods: Backtracking
13. Problem solving methods: Greedy
14. Practical test
Bibliography

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, Third Edition, 2017.
2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.
3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002. http://en.wikipedia.org/wiki/Test-
driven_development
4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.
http://refactoring.com/catalog/index.html
5. The Python Programming Language - https://www.python.org/
6. The Python Standard Library - https://docs.python.org/3/library/
7. The Python Tutorial - https://docs.python.org/3/tutorial/
8.3. Seminar Teaching methods Remarks
1. Simple Python programs.
Procedural Programming

 Interactive exposure
 Explanation
 Conversation
 Didactical demonstration

2. Modular Programming. Feature-
driven software development.
3. Abstract data types. Design
principles.
4. Object-oriented programming.
Program design. Layered architecture.
5. Inspection and testing. Recursion.
Complexity of algorithms.
6. Search and sorting algorithms.
Problem solving methods:
Backtracking.
7. Problem solving methods: Greedy.
Bibliography

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, Third Edition, 2017.
2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.
3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002. http://en.wikipedia.org/wiki/Test-
driven_development
4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.
http://refactoring.com/catalog/index.html
5. The Python Programming Language - https://www.python.org/

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
https://www.python.org/
https://docs.python.org/3/library/
https://docs.python.org/3/tutorial/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
https://www.python.org/
https://docs.python.org/3/library/
https://docs.python.org/3/tutorial/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development
http://refactoring.com/catalog/index.html
https://www.python.org/

6. The Python Standard Library - https://docs.python.org/3/library/
7. The Python Tutorial - https://docs.python.org/3/tutorial/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

 The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
 The course exists in the studying program of all major universities in Romania and abroad.
 The content of the course is considered by the software companies as important for average programming skills.

10. Evaluation
Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

The correctness and
completeness of the
accumulated knowledge
and the capacity to design
and implement correct
Python programs.

Written exam 40%

10.5 Laboratory

Be able to design,
implement and test a
Python program

Practical exam 30%

Correctness of laboratory
assignments and
documentation delivered
during the semester

Program and
documentation 30%

10.6. Seminar Seminar activity

Active participation at the
discussions during the
seminar (asking and
answering questions,
volunteering to solve
problems, etc.)

Maximum 0.5 points bonus,
added to the final grade

10.6 Minimum standard of performance

 Each student must demonstrate an acceptable level of knowledge and understanding of the domain, the ability to
present knowledge in a coherent manner and the ability to establish connections and use this knowledge to solve
different problems in Python.

 It is mandatory for each student to attend minimum 5 seminars and 12 labs.

 A minimum grade of 5 should be obtained at the lab activity, practical test and written examination.

11. Labels ODD (Sustainable Development Goals)2

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the
discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no
label describes the discipline, delete them all and write „Not applicable.”.

https://docs.python.org/3/library/
https://docs.python.org/3/tutorial/
https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

Not applicable.

Date:
22.09.2025

Signature of course coordinator

Asist. dr. Anamaria Briciu

Signature of seminar coordinator

Asist. dr. Anamaria Briciu

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

	1.1. Higher education institution
	Babes-Bolyai University
	1.2. Faculty

	Faculty of Mathematics and Computer Science
	1.3. Department
	Department of Computer Science
	Computers and Information Technology
	Bachelor
	1.6. Study programme/Qualification

	Information Enginnering
	1.7. Form of education

	Full time
	3.1. Hours per week
	3.4. Total hours in the curriculum
	42
	Time allotment for individual study (ID) and self-
	hours
	18
	Additional documentation (in libraries, on electro
	18
	Preparation for seminars/labs, homework, papers, p
	14
	Tutorship
	12
	Evaluations
	18
	Other activities:
	3.7. Total individual study hours
	80
	3.8. Total hours per semester
	150
	3.9. Number of ECTS credits
	6

