LEHRVERANSTALTUNGSBESCHREIBUNG

Künstliche Intelligenz

Akademisches Jahr 2025-2026

1. Angaben zum Programm

1.1. Hochschuleinrichtung	Universitatea Babes-Bolyai
1.2. Fakultät	Mathematik und Informatik
1.3. Department	Informatik
1.4. Fachgebiet	Informatik
1.5. Studienform	Bachelor
1.6. Studiengang / Qualifikation	Informatik in deutscher Sprache
1.7. Form des Studiums	Präsenzstudium

2. Angaben zum Studienfach

2.1. LV-Bezeichnung	K	Künstliche Intelligenz					Code der LV	MLG5029	
2.2. Lehrverantwortlicher – Vorlesung Pr			Pro	f. dr.	Stefan Lüdtke				
2.3. Lehrverantwortlicher – Seminar			Pro	f. dr.	Stefan Lüdtke				
2.4. Studienjahr	2	2.5. Semeste	er	2	2.6. Prüfungsform	Е	2.7. Art d	er LV	Pflichtfach

3. Geschätzter Workload in Stunden

3.1. SWS	4	von denen: 3.2 Vorlesung	2	3.3. Seminar/Übung/Projekt	2	
3.4. Gesamte Stundenanzahl im Lehrplan	56	von denen: 3.5 Vorlesung	28	3.6 Seminar/Übung/Projekt	28	
Verteilung der Studienzeit:						
Studium nach Handbücher, Kursbuch, Bibliographie und Mitschriften					14	
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch Feldforschung					14	
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays					38	
Tutoriat					14	
Prüfungen					14	
Andere Tätigkeiten:						
3.7. Gesamtstundenanzahl Selbststudium 94						
3.8. Gesamtstundenanzahl / Semester 150						
3.9. Anrechnungspunkte 6						

4. Voraussetzungen (falls zutreffend)

4. Voldussetzungen (lans zutrenen)					
4.1. zur Lehrveranstaltung	Datenstrukturen und Algorithmen				
4.2. kompetenzbezogene	Fähigkeiten in einer objektorientierter Programmiersprache zu programmieren.				

5. Bedingungen (falls zutreffend)

5.1. zur Durchführung der Vorlesung	Vorlesungsraum, Beamer, Laptop
5.2. zur Durchführung des Seminars / der Übung	Labor, Beamer, Laptop

6.1. Spezifische erworbene Kompetenzen¹

OIL OP CEITIS CITY C.	wordene Kompetenzen
	CE1.1 Beschreibung der Konzepte und Forschungsziele der künstlichen Intelligenz
	CE1.2 Auswertung der Qualität und Stabilität der erzielten Lösungen und ihr Vergleich mit klassischen Methoden erhaltenen Lösungen
Berufliche/W esentliche	CE1.3 Anwendung der Methoden, Techniken und Algorithmen der künstlichen Intelligenz für die Modellierung der Lösungen von bestimmten Klassen von Problemen
Kompetenzen	CE1.4 Identifizierung und Erklärung der geeigneten Techniken und Algorithmen der künstlichen Intelligenz und deren Anwendung für die Lösung von spezifischen Problemen
	CE1.5 Einarbeitung der Modelle und Lösungen der künstlichen Intelligenz und deren Benutzung für spezifische Anwendungen
Transversale Kompetenzen	TK1 Anwendung der Regeln für gut organisierte und effiziente Arbeit, für verantwortungsvolle Einstellungen gegenüber der Didaktik und der Wissenschaft, für kreative Förderung des eigenen Potentials, mit Rücksicht auf die Prinzipien und Normen der professionellen Ethik TK2 Anwendung von effizienten Methoden und Techniken für Lernen, Informieren und Recherchieren, für das Entwicklen der Kapazitäten der praktischen Umsetzung der Kenntnisse, der Anpassung an die Bedürfnisse einer dynamischen Gesellschaft, der Kommunikation in rumänischer Sprache und in einer internationalen Verkehrssprache

6.2. Lernergebnisse

	Der/Die Studierende weiß:
	- wie man das Wissen in Bezug auf Programmierung, Mathematik, Ingenieurwesen und Technologie anwendet und hat die Fähigkeiten, dieses zur Erstellung komplexer Informationstechnologiesysteme zu nutzen;
Kenntnisse	- wie man integrierte Entwicklungsumgebungen (IDEs) zur Erstellung großer, komplexer Anwendungen verwendet;
	- wie man Methoden, Algorithmen, Paradigmen und Techniken aus verschiedenen Bereichen der Informatik präsentiert und erklärt.
	Der/Die Studierende ist in der Lage:
	- komplexe Probleme zu identifizieren und damit verbundene Sachverhalte zu untersuchen, um Lösungsoptionen zu entwickeln und Lösungen zu implementieren;
Fähigkeiten	- vielfältige Informationen zu kombinieren, um Lösungen zu formulieren und Ideen für die Entwicklung neuer Produkte und Anwendungen zu generieren;
	- Methoden, Algorithmen, Paradigmen und Techniken aus verschiedenen Bereichen der Informatik zu präsentieren und zu erklären.
	Der/Die Studierende besitzt die Fähigkeit, selbstständig Folgendes zu erarbeiten:
Verantwortung	- Lösungen sowie Ideen für die Entwicklung neuer Produkte und Anwendungen;
und Autonomie	- GUI-Anwendungen unter Verwendung von Architekturvorlagen (architectural templates), die für spezifische Benutzerinteraktionsanwendungen geeignet sind.

¹ Man kann Kompetenzen oder Lernergebnisse, oder beides wählen. Wenn nur eine Option ausgewählt wird, wird die Tabelle für die andere Option gelöscht, und die beibehaltene Option erhält die Nummer 6.

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der Lehrveranstaltung	Das Aneignen der Kenntnissen aus dem Bereich der künstlichen Intelligenz
7.2 Spezifische Ziele der Lehrveranstaltung	Das Aneignen der Kenntnisse über Methodologien der KI. Die Vertrautheit mit Konzepten der modernen Softwareentwicklung

8. Inhalt

8.1 Vorlesung	Lehr-und Lernmethode	Anmerkungen
1. Einführung in die KI. Intelligente Agenten.	Vortrag, Gespräch, Fallstudien	
2. Suchstrategien (Suchräume, uninformierte Suche, BFS, DFS, iterative deepening search, uniform cost search).	Vortrag, Gespräch, Fallstudien	
3. Informierte Suche (Best first search, Greedy best-first search, A*, IDA*).	Vortrag, Gespräch, Fallstudien	
4. Lokale Suche (einfache lokale Suche, Tabu Suche, Hill climbing, Simulated annealing).	Vortrag, Gespräch, Fallstudien	
5. Evolutionäre Algorithmen I.	Vortrag, Gespräch, Fallstudien	
6. Evolutionäre Algorithmen II.	Vortrag, Gespräch, Fallstudien	
7. Maschinelles Lernen (Separabilität, Perzeptron, Regelbasierte Systeme, Approximierungsmethoden, kNN).	Vortrag, Gespräch, Fallstudien	
8. Maschinelles Lernen (Entscheidungsbäume, C4.5, nearest neighbour, naive Bayes)	Vortrag, Gespräch, Fallstudien	
9. Supervised vs. Unsupervised learning, Regression, automatische Klassifikation.	Vortrag, Gespräch, Fallstudien	
10. Clustering.	Vortrag, Gespräch, Fallstudien	
11. Clustering Algorithmen (K-means, EM, etc.).	Vortrag, Gespräch, Fallstudien	
12. Neuronale Netze I.	Vortrag, Gespräch, Fallstudien	

13. Neuronale Netze II.	Vortrag, Gespräch, Fallstudien	
14. SVM.	Vortrag, Gespräch, Fallstudien	

Literatur in deutscher Sprache

- 1. ERTEL, W., Grundkurs Künstliche Intelligenz, Vieweg Teubner, 2009.
- 2. JAROSCH, H., Information Retrieval und Künstliche Intelligenz, Deutscher Universitäts-Verlag, 2007.
- 3. S. Russell, P. Norvig, Künstliche Intelligenz Ein moderner Ansatz, Pearson, 2012.
- 4. Jan Lunze, Künstliche Intelligenz für Ingenieure, De Gruyter Oldenbourg, 2016.
- 5. R. Kruse et all, Computational Intelligence, Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Vieweg Teubner, 2011.

Sonstige Literatur

- 1. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 2. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 3. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 4. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 5. James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948, 1995

8.2 Labor	Lehr-und Lernmethode	Anmerkungen
L1. Lösen von Aufgaben mit Hilfe der uninformierten Methoden.	Rückschau, Erklärungen, Beispiele	
L2. Lösen von Aufgaben mit Hilfe der informierten Methoden.	Rückschau, Erklärungen, Beispiele	
L3. Lösen der Suchaufgaben mit Hilfe lokaler Methoden.	Rückschau, Erklärungen, Beispiele	
L4. Lösen der Suchaufgaben mit Hilfe evolutionärer Algorithmen.	Rückschau, Erklärungen, Beispiele	
L5. Lösen der Suchaufgaben mit Hilfe evolutionärer Algorithmen.	Rückschau, Erklärungen, Beispiele	
L6. Fallstudien	Rückschau, Erklärungen, Beispiele	
L7. – L13. Lösen der Lernaufgaben mit Hilfe neuronaler Netze und evolutionären Algorithmen.	Erklärungen, Beispiele	
L14. Projektabgabe		

Literatur

- 1. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 2. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 3. Russell St., P. Norvig, Künstliche Intelligenz (Pearson Studium IT), Pearson GmbH, 2012
- 4. Peter Zöller-Greer, Künstliche Intelligenz: Grundlagen und Anwendungen, composia Verlag, 2010

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

Die Vorlesung folgt die IEEE und ACM Curricula Empfehlungen für das Informatikstudium.

Die Vorlesung existiert in der Mehrzahl der rumänischen und ausländischen Universitäten.

Die Softwarefirmen finden den Vorlesungsinhalt sehr wichtig für die Ausbildung der Zukünftigen Softwareentwickler.

10. Prüfungsform

Veranstaltungsart	10.1 Evaluationskriterien	10.2 Evaluationsmethoden	10.3 Anteil an der Gesamtnote
10.4 Vorlesung	Kenntnisse der im Kurs behandelten Themen	schriftliche Abschlussarbeit	60%
10.5 Seminar / Übung	Die Fähigkeit Modellierungstechniken für das Lösen konkreter Probleme einzusetzen	3 Mini-projekte	40%

10.6 Minimale Leistungsstandards

die Endnote muss mindestens 5 sein

${\bf 11.\,SDD\text{-}Nachhaltigkeits\text{-}Logos\,(Sustainable\,Development\,Goals)^2}$

Nicht anwendbar.

Ausgefüllt am: 17.04.2025	Vorlesungsverantwortlicher	Seminarverantwortlicher
	Prof. dr. Stefan Lüdtke	Prof. dr. Stefan Lüdtke
Genehmigt im Department am:		Departmentleiter
		Conf. dr. Adrian STERCA

² Bitte belassen Sie nur die Logos, die entsprechend den <u>Regularien zu Anwendung der Nachhaltigkeits-Logos im</u> <u>akademischen Betrieb</u> dem jeweiligen Studienfach entsprechen und löschen Sie diejenigen Logos, inklusive das allgemeine <u>Nachhaltigkeits-Logo</u> falls dieses nicht zutrifft. Falls keines der Logos für das Studienfach anwendbar ist, löschen Sie alle mit der Angabe "nicht anwendbar".