LEHRVERANSTALTUNGSBESCHREIBUNG

Logik für Informatiker

Akademisches Jahr 2025-2026

1. Angaben zum Programm

1.1. Hochschuleinrichtung	Babeş-Bolyai Universität
1.2. Fakultät	Mathematik und Informatik
1.3. Department	Informatik
1.4. Fachgebiet	Informatik
1.5. Studienform	Bachelor
1.6. Studiengang / Qualifikation	Informatik in deutscher Sprache
1.7. Form des Studiums	IF

2. Angaben zum Studienfach

2.1. LV-Bezeichnung	Lo	Logik für Informatiker			Code der LV	MLG5055		
2.2. Lehrverantwortlicher – Vorlesung Conf. Dr. Christian Săcărea								
2.3. Lehrverantwortlicher – Seminar Conf. Dr. Christian Săcărea								
2.4. Studienjahr	1	2.5. Semeste	r 1	2.6. Prüfungsform	Е	2.7. Art d	er LV	

3. Geschätzter Workload in Stunden

3.1. SWS	4	von denen: 3.2 Vorlesung	2	3.3. Seminar/Übung	2
3.4 Gesamte Stundenanzahl im	F.6	von donon, 2 F Vonlagung	20	2.6 Comingn/Ühung	28
Lehrplan	56	von denen: 3.5 Vorlesung	28	3.6 Seminar/Übung	28
Verteilung der Studienzeit:				Std.	
Studium nach Handbücher, Kursbuch, Bibliographie und Mitschriften			20		
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch Feldforschung			10		
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays			26		
Tutoriat (consiliere profesională)			8		
Prüfungen			30		
Andere Tätigkeiten:			-		
3.7. Gesamtstundenanzahl Selbststudium 94				•	
3.8. Gesamtstundenanzahl / Semester	3.8. Gesamtstundenanzahl / Semester 150				
3.9. Anrechnungspunkte	3.9. Anrechnungspunkte 6				

4. Voraussetzungen (falls zutreffend)

1. Voluussetzungen (lans zu	renenaj
4.1. zur Lehrveranstaltung	-
4.2. kompetenzbezogene	-

5. Bedingungen (falls zutreffend)

or zouringungen (runs zuer erreinu)	
5.1. zur Durchführung der Vorlesung	-
5.2. zur Durchführung des Seminars / der Übung	-

6.1. Spezifische erworbene Kompetenzen¹

¹ Man kann Kompetenzen oder Lernergebnisse, oder beides wählen. Wenn nur eine Option ausgewählt wird, wird die Tabelle für die andere Option gelöscht, und die beibehaltene Option erhält die Nummer 6.

C3.1 Identifizierung von Problemklassen und Lösungsverfahren, die für Informationssysteme charakteristisch sind. C3.2 Nutzung interdisziplinärer Kenntnisse, Lösungsmuster und Werkzeuge; Durchführung von Experimenten und Interpretation ihrer Ergebnisse. C3.4 Vergleichende, einschließlich experimentelle, Bewertung von Lösungsalternativen zur Leistungsoptimierung. CT1 Ehrenhaftes, verantwortungsbewusstes und ethisches Verhalten im Sinne des Gesetzes, um den Ruf des Berufsstands zu wahren. CT3 Nachweis von Initiative und Handlungsbereitschaft zur Aktualisierung der beruflichen, wirtschaftlichen und organisatorischen Kenntnisse.

6.2. Lernergebnisse

Kennt-nisse	Der Absolvent verfügt über die notwendigen Kenntnisse zur Nutzung von Computern, zur Entwicklung von Softwareprogrammen und Anwendungen sowie zur Informationsverarbeitung. Der Absolvent besitzt Kenntnisse in den Bereichen Programmierung, Mathematik, Ingenieurwesen und Technologie und hat die Fähigkeiten, diese zur Erstellung komplexer IT-Systeme einzusetzen.
Fähigkeiten	Der Absolvent verfügt über die notwendigen Fähigkeiten zur Gestaltung von Computerprogrammen und zur Analyse von Softwaresystemen. Der Absolvent ist in der Lage, allgemeine Regeln auf spezifische Probleme anzuwenden und relevante Lösungen zu entwickeln.
Verantwortung und Autonomie	Der Absolvent ist in der Lage, komplexe Probleme zu identifizieren und die damit verbundenen Aspekte zu untersuchen, um Lösungsoptionen zu entwickeln und umzusetzen. Der Absolvent ist in der Lage, vielfältiges Wissen und verschiedene Techniken zu kombinieren, um computerbasierte Systeme und Anwendungen zu entwerfen, zu entwickeln und zu verbessern.

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der	 Kenntnis von mathematischen und algorithmischen Grundlagen der Logik;
Lehrveranstaltung	Befähigung zum Umgang mit Aussagen – und Prädikatenlogik.
7.2 Spezifische Ziele der Lehrveranstaltung	• Formalisierung und Automatisierung rationalen Denkens 🛭 Rolle der Logik in der Informatik

8. Inhalt

zweiwertige Modelle	

8.1 Vorlesung	Lehr-und Lernmethode	Anmerkungen
1. Einleitung, Syntax und Semantik der	Darstellung der Thematik,	
Aussagenlogik.	Diskussion	

2. Einleitung, Syntax und Semantik der Aussagenlogik.	Vortrag, Beweis, Diskussion
3. Erfüllbarkeit aussagenlogischer Formeln,	Vortrag, Beweis, Diskussion
4. Normalformen; DPLL Algorithmus.	Vortrag, Beweis, Diskussion
5. SAT-Algorithmen und Normalformen.	Vortrag, Beweis, Diskussion
6. Modellierung.	Vortrag, Beweis, Diskussion
7. Aussagenlogische Resolution.	Vortrag, Diskussion
8. Prädikatenlogik; Syntax und Semantik.	Vortrag, Beweis, Diskussion
9. Prädikatenlogik; Quantoren; Substitutionen.	Vortrag, Diskussion
10. Erfüllbarkeit; Strukturelle Induktion; Substitutionen und Valuationen.	Vortrag, Beweis, Diskussion
11. Prädikatenlogik, Normalformen; Kalküle und Entscheidbarkeit.	Vortrag, Diskussion
12. Prädikatenlogische Resolution.	Vortrag, Diskussion
13. Herbrand Strukturen; Unifikationsalgorithmus.	Vortrag, Diskussion
14. Input-Resolution; Lineare Resolution; SLD-Resolution.	Vortrag, Beweis, Diskussion

Literatur

- Uwe Schöning, Logik für Informatiker, Spektrum Akademischer Verlag, 2000
- Jürgen Dassow, Logik für Informatiker, Vieweg+Teubner Verlag, 2005
- H.D. Ebbinhaus et all, Einführung in die mathematische Logik, Spektrum 2007
- Asser, G., Einführung in die mathematische Logik, vol. 1, Aussagenkalkül, Teubner, Leipzig, 1965.
- Asser, G., Einführung in die mathematische Logik, vol. 3, Prädikatenlogik erster Stufe, Teubner, Leipzig, 1972.
- Asser, G., Einführung in die mathematische Logik, vol. 3, Prädikatenlogik höherer Stufe, Teubner, Leipzig, 1981.

8.2 Seminar / Laborarbeit	Lehr-und Lernmethode	Anmerkungen
Seminar 1. Einführung in die Logik.		
Seminar 2. Aussagenlogische Formeln.		
Seminar 3. Erfüllbarkeit und Äquivalenzen.		
Seminar 4. Aussagenlogik, Normalformen,		
Tautologien		
Seminar 5. Aufgaben: Aussagenlogik,		
Normalformen, Tautologie		
Seminar 6. Hornformeln.		
Seminar 7. Resolutionsverfahren.		
Seminar 8. Prädikatenlogik.		
Seminar 9. Modellierung von Aussagen mit		
Prädikatenlogik; Freie und gebundene Variablen.		
Seminar 10. Semantik der Prädikatenlogik.		
Seminar 11. Normalformen.		

Seminar 12. Unifikationsprobleme.	
Seminar 13. Prädikatenlogische Resolution.	
Seminar 14. Prädikatenlogische Resolution.	

Literatur

- Uwe Schöning, Logik für Informatiker, Spektrum Akademischer Verlag, 2000
- Jürgen Dassow, Logik für Informatiker, Vieweg+Teubner Verlag, 2005

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

- Diese Vorlesung wird an international bekannten Universitäten im Fachgebiet Informatik angeboten.
- Logik spielt eine zentrale Rolle bei Entwurf, Bau und Betrieb von Computern und Netzen. In ihrer mathematischen Ausprägung als boolesche Algebra wird sie zur Beschreibung elektrischer Schaltungen benutzt. Sie ist also eine Grundlage für die Hardware.

10. Prüfungsform

Veranstaltungsart	10.1 Evaluationskriterien	10.2 Evaluationsmethoden	10.3 Anteil an der Gesamtnote	
10.4 Vorlesung	Korrekter Umgang mit Aussagen - und Prädikatenlogik; Grundkenntnisse des logisches Programmierens; boolsche Funktionen; logische Schaltungen	schriftliche Abschlussarbeit	100%	
10.5 Seminar / Übung Anwesenheit, aktive Mitarbeit, richtiges Lösen der Hausaufgaben		Diskussion	Bonuspunkte	
10.6 Minimale Leistungss	standards			

Für das Bestehen der Prüfung muss die Mindestnote 5 erzielt werden.

Allgemeines Logo für die SDG-Initiative

² Bitte belassen Sie nur die Logos, die entsprechend den <u>Regularien zu Anwendung der Nachhaltigkeits-Logos im akademischen Betrieb</u> dem jeweiligen Studienfach entsprechen und löschen Sie diejenigen Logos, inklusive das allgemeine <u>Nachhaltigkeits-Logo</u> falls dieses nicht zutrifft. Falls keines der Logos für das Studienfach anwendbar ist, löschen Sie alle mit der Angabe "nicht anwendbar".

Ausgefüllt am: Vorlesungsverantwortlicher Seminarverantwortlicher 11.04.2025

Conf.Dr. Christian Săcărea Conf.Dr. Christian Săcărea

Genehmigt im Department am: Departmentleiter 25.04.2025

Conf. Dr. Adrian Sterca