
SYLLABUS	

Design	Patterns	

University	year	2025	-	2026	

	

1.	Information	regarding	the	programme	
1.1.	Higher	education	institution	 Babeş-Bolyai	University	of	Cluj-Napoca	
1.2.	Faculty	 Faculty	of	Mathematics	and	Computer	Science	
1.3.	Department	 Department	of	Computer	Science	
1.4.	Field	of	study	 Computer	Science	
1.5.	Study	cycle	 Bachelor	
1.6.	Study	programme/Qualification	 Computer	Science	
1.7.	Form	of	education	 Full	time	

	
2.	Information	regarding	the	discipline	
2.1.	Name	of	the	discipline	 Design	Patterns	 Discipline	code	 MLE8115		
2.2.	Course	coordinator	 Assoc.	Prof.	Molnar	Arthur-Jozsef	
2.3.	Seminar	coordinator	 Assoc.	Prof.	Molnar	Arthur-Jozsef	
2.4.	Year	of	study	 3	 2.5.	Semester	 6	 2.6.	Type	of	evaluation	 C	 2.7.	Discipline	regime	 Elective	

	
3.	Total	estimated	time	(hours/semester	of	didactic	activities)	

	
4.	Prerequisites	(if	necessary)	
4.1.	curriculum	 Fundamentals	of	Programming,	Object-Oriented	Programming	

4.2.	competencies	 Good	programming	skills	in	a	programming	language	that	supports	the	object-oriented	paradigm	
(preferably	one	of	Python,	C++,	Java	or	C#)	

	
5.	Conditions	(if	necessary)	
5.1.	for	the	course	 Classroom	with	video-projector	and	Internet	access.	
5.2.	for	the	seminar	/lab	activities	 Classroom	with	video-projector	and	Internet	access.	
	
	
	
	

3.1.		Hours	per	week			 3	 of	which:	3.2	course	 2	 3.3	
seminar/laboratory/project	 1	

3.4.		Total	hours	in	the	curriculum	 36	 of	which:	3.5	course			 24	 3.6		
seminar/laboratory/project	 12	

Time	allotment	for	individual	study	(ID)	and	self-study	activities	(SA)	 hours	
Learning	using	manual,	course	support,	bibliography,	course	notes	(SA)	 20	
Additional	documentation	(in	libraries,	on	electronic	platforms,	_ield	documentation)	 20	
Preparation	for	seminars/labs,	homework,	papers,	portfolios	and	essays	 30	
Tutorship		 14	
Evaluations	 2	
Other	activities:	 3	
3.7.		Total	individual	study	hours	 89	
3.8.		Total	hours	per	semester	 125	
3.9.		Number	of	ECTS	credits	 5	



6.1.	SpeciOic	competencies	acquired	1	
Pr
of
es
si
on
al
/e
ss
en
ti
al
	

co
m
pe
te
nc
ie
s	

• Advanced	programming	skills	in	high-level	programming	languages	
• Development	and	maintenance	of	software	systems	

Tr
an
sv
er
sa
l	

co
m
pe
te
nc
ie
s	

• Application	of	organized	and	ef_icient	work	rules,	of	responsible	attitudes	towards	the	didactic-scienti_ic	
_ield,	to	bring	creative	value	to	own	potential,	with	respect	for	professional	ethics	principles	and	norms	

• Use	of	ef_icient	methods	and	techniques	to	learn,	inform,	research	and	develop	the	abilities	to	bring	value	
to	knowledge,	to	adapt	at	the	requirements	of	a	dynamical	society	and	to	communicate	ef_iciently	in	the	
Romanian	language	and	in	an	international	language	

	

6.2.	Learning	outcomes	

K
no
w
le
dg
e	 • The	graduate	has	the	necessary	knowledge	for	using	computers,	developing	software	programs	and	

applications,	information	processing.	
• The	graduate	is	able	to	apply	architectural	styles,	design	patterns	and	best	practices	in	the	_ield	to	design	

software	applications	of	high	complexity.	
• The	graduate	has	the	ability	to	understand	and	use	design	patterns	for	application	development.	

Sk
ill
s 	 • The	graduate	has	the	necessary	skills	for	computer	program	design	and	software	systems	analysis.	

• The	graduate	has	the	ability	to	apply	general	rules	to	speci_ic	problems	and	produce	relevant	solutions.	

Re
sp
on
si
bi
lit
y 	

an
d	
au
to
no
m
y:
	 • The	graduate	has	the	ability	to	understand	and	communicate	information	effectively.	

• The	graduate	is	able	to	combine	diverse	information	to	formulate	solutions	and	generate	ideas	for	
developing	new	products	and	applications.	

• The	graduate	has	the	ability	to	choose	and	use	programming	paradigms	(procedural,	object-oriented,	
functional)	to	develop	software	applications	appropriate	for	the	speci_ic	domain	of	the	application	being	
developed.	

• The	graduate	is	able	to	present	and	explain	methods,	algorithms,	paradigms	and	techniques	used	in	
various	branches	of	computer	science.	

	
7.	Objectives	of	the	discipline	(outcome	of	the	acquired	competencies)	

7.1	General	objective	of	the	
discipline	

Enhance	student	understanding	of	software	design	concepts	and	patterns	through	a	
pragmatic,	empirical	approach.	

7.2	SpeciOic	objective	of	the	
discipline	

• Give	students	the	ability	to	explore	various	object-oriented	programming	
languages.	

• Provide	students	with	an	environment	in	which	they	can	explore	the	usage	and	
usefulness	of	software	design	concepts	in	various	business	scenarios.	

• Induce	a	realistic	and	industry	driven	view	of	software	design	concepts	such	as	
design	patterns	and	their	inherent	benefits.	

• Provide	students	with	insights	into	ways	of	working	towards	achieving	high	
quality	software. 

 
1	One	can	choose	either	competences	or	learning	outcomes,	or	both.	If	only	one	option	is	chosen,	the	row	related	
to	the	other	option	will	be	deleted,	and	the	kept	one	will	be	numbered	6.	



8.	Content	
8.1	Course	 Teaching	methods	
Object	oriented	programming	(OOP)	principles	
Recap	presentation	that	covers	the	OOP	principles	of	encapsulation,	inheritance,	
polymorphism,	cohesion,	coupling,	aggregation,	composition.	

• Interactive	exposure	
• Explanation	
• Conversation	
• Examples	
• Didactical	

demonstration	

SOLID	principles	
Their	role	as	important	principles	behind	high	quality	software:	single	responsibility	
principles,	open-closed	principle,	Liskov	substitution,	interface	segregation	and	
dependency	inversion.	
Creational	design	patterns	
(Abstract)	Factory,	Builder,	Prototype,	Singleton	
Structural	design	patterns	
Adapter,	Bridge,	Composite,	Decorator,	Façade,	Flyweight,	Proxy	
Behavioural	design	patterns	
Chain	of	responsibility,	Command,	Iterator,	Mediator,	Memento,	Observer,	State,	Strategy,	
Template,	Visitor.	
Antipatterns	
Common	responses	to	recurring	problems	that	are	usually	ineffective	and	risk	
being	highly	counterproductive.	A	selection	of	antipatterns	with	code	examples	illustrating	
some	of	the	most	encountered	issues	in	source	code	(e.g.,	golden	hammer,	God	class,	
spaghetti	code)	
Dark	Patterns	in	user	experience	design	
Deceptive	design	patterns	applied	to	the	user	experience/interface	aiming	to	trick	users	
into	doing	things	they	otherwise	would	not.	A	selection	of	dark	patterns	with	examples	
from	real	applications	(e.g.,	drip	pricing,	roach	motel,	misdirection).	
Model-View-*	design	patterns	
A	selection	of	higher-level	design	patterns	(Model	View	Controller,	Model	View	ViewModel,	
Model	View	Presenter)	
Enterprise	and	architecture	design	patterns	
A	selection	of	high-level	design	patterns	encountered	in	enterprise	applications	requiring	
high	availability	and	performance	(e.g.,	message	routing,	pipes	and	filters,	peer	to	peer,	
microservices).	
Bibliography	
1. M.	Fowler	–	Patterns	of	Enterprise	Application	Architecture,	Addison	Wesley,	2003	
2. E.	Freeman,	E.	Freeman,	B.	Bates	–	Head-First	Design	Patterns,	Oreilly,	2004	
3. E.	Gamma,	R.	Helm,	R.Johnson,	J.	Vlissides	–	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	

Addison	Wesley,	1995	
4. William	J.	Brown,	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick,	Thomas	J.	Mowbray	-	AntiPatterns:	Refactoring	

Software,	Architectures,	and	Projects	in	Crisis,	Wiley,	1998.	
5. Harry	Brignull	-	Deceptive	Patterns,	Exposing	the	Tricks	Tech	Companies	Use	to	Control	You	(free	edition	on	

https://www.deceptive.design/book/contents/get-started),	Testimonium	Ltd.,	2023.		
8.2	Seminar	/	laboratory	 Teaching	methods	
OOP	concepts	recap.	Introduction	to	laboratory	activities	and	grading	

• Interactive	exposure	
• Explanation	
• Conversation	
• Examples	
• Didactical	

demonstration	

SOLID	principles.	Creational	design	patterns	
Structural	design	patterns.	Checking	progress	of	laboratory	project	
Behavioural	design	patterns.	Checking	progress	of	laboratory	project	
Antipatterns.	Dark	patterns.	Architectural	and	enterprise	patterns	
Laboratory	project	turn-in	
Bibliography	
1. M.	Fowler	–	Patterns	of	Enterprise	Application	Architecture,	Addison	Wesley,	2003	
2. E.	Freeman,	E.	Freeman,	B.	Bates	–	Head-First	Design	Patterns,	Oreilly,	2004	
3. E.	Gamma,	R.	Helm,	R.Johnson,	J.	Vlissides	–	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software,	

Addison	Wesley,	1995	
4. William	J.	Brown,	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick,	Thomas	J.	Mowbray	-	AntiPatterns:	Refactoring	

Software,	Architectures,	and	Projects	in	Crisis,	Wiley,	1998.	
5. Harry	Brignull	-	Deceptive	Patterns,	Exposing	the	Tricks	Tech	Companies	Use	to	Control	You	(free	edition	on	

https://www.deceptive.design/book/contents/get-started),	Testimonium	Ltd.,	2023.	
	

https://www.deceptive.design/book/contents/get-started
https://www.deceptive.design/book/contents/get-started


9.	Corroborating	the	content	of	the	discipline	with	the	expectations	of	the	epistemic	community,	professional	
associations	and	representative	employers	within	the	Oield	of	the	program	

• The	course	respects	the	IEEE	and	ACM	Curricula	Recommendations	for	Computer	Science	studies.	
• The	course	exists	in	the	study	program	of	all	major	universities	in	Romania	and	abroad.	
• The	content	of	the	course	is	considered	by	software	companies	as	important	for	average	programming	skills.	
	

10.	Evaluation	
Activity	type	 10.1	Evaluation	criteria	 10.2	Evaluation	methods	 10.3	Percentage	of	_inal	grade	

10.4	Course	

Presentation	during	the	
semester	 Grading	based	on	

presentation	quality,	
thoroughness	and	
suitability	of	examples	
selected.	

25%	

Examination	during	the	
_inal	week.	 50%	

10.5	Seminar/laboratory	 Laboratory	project	 25%	

10.6	Minimum	standard	of	performance	
• 	Students	must	observe	the	standards	of	academic	integrity.	
• A	minimum	passing	grade	is	de_ined	by	attaining	at	least	50%	(5/10)	points	in	the	_inal	grade.	
	

11.	Labels	ODD	(Sustainable	Development	Goals)2	
	

Not	applicable.	

	

Date:	
28.04.2025	

Signature	of	course	coordinator	

Assoc.	Prof.	Molnar	Arthur-Jozsef	

Signature	of	seminar	coordinator	

Assoc.	Prof.	Molnar	Arthur-Jozsef	

	 	 	

Date	of	approval:	
...	
	

	

Signature	of	the	head	of	department	

Assoc.prof.phd.	Adrian	STERCA	

	

	

	

 
2	Keep	only	the	labels	that,	according	to	the	Procedure	for	applying	ODD	labels	in	the	academic	process,	suit	the	
discipline	and	delete	the	others,	including	the	general	one	for	Sustainable	Development	–	if	not	applicable.	If	no	
label	describes	the	discipline,	delete	them	all	and	write	„Not	applicable.”.	

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

