SYLLABUS

Computer Vision and Deep Learning

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Computer Science
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the discipline	Computer Vision and Deep Learning				Discipline code	MLE5152	
2.2. Course coordinator	pordinator Lec			ct. Ph	D. Diana Laura Borza		
2.3. Seminar coordinator			Le	ct. Ph	D. Diana Laura Borza		
2.4. Year of study 3 2.5	. Semester	6	2.6. Type of evaluation	on	С	2.7. Discipline regime	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 L 2P
3.4. Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar/laboratory/project	14L 28P
Time allotment for individual study (ID) and self-study activities (SA)					hours
Learning using manual, course support, bibliography, course notes (SA)					14
Additional documentation (in libraries, on electronic platforms, field documentation)					16
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					4
Evaluations					4
Other activities:					
3.7. Total individual study hours 58					
3.8. Total hours per semester	100				
3.9. Number of ECTS credits	4				

4. Prerequisites (if necessary)

	necessary
	Linear Algebra
4.1. curriculum	Python programming
	• Statistics
	Data structures and algorithms
4.2. competencies	Average programming skills in a high-level programming language

5. Conditions (if necessary)

Si conditions (in necessary)	
5.1. for the course	 Classroom with blackboard and video projector.
5.2. for the seminar /lab activities	 Laboratory equipped with high-performance computers and having python
3.2. for the seminar /lab activities	installed.

6. Specific competencies acquired

Professional/essential competencies	 advanced programming skills in high-level programming languages development and maintenance of software systems use of software tools in an interdisciplinary context use of theoretical foundations of computer science as well as of formal models use of artificial intelligence concepts and techniques to solve real-world problems
Transversal competencies	 application of organized and efficient work rules, of responsible attitudes towards the didactic-scientific field, to bring creative value to own potential, with respect for professional ethics principles and norms efficient development of organized activities in an interdisciplinary group and the development of empathetic abilities for use of efficient methods and techniques to learn, inform, research and develop the abilities to bring value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently in Romanian language and in an international language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The goal of this course is to acquaint the students with the field of computer vision from a deep learning perspective. The students will learn how to analyse, design, implement, and evaluate any complex computer vision problem. The course covers both image and video processing, including image classification, object detection, object tracking, action recognition, image stylization and synthetic data generation.
7.2 Specific objective of the discipline	 Understand various architectures of Convolutional Neural Networks for image classification, object detection, video analysis, and synthetic visual data generation. Solve and analyse a Computer Vision problem using a specific theoretical apparatus. Understand and develop efficient fine-tuning strategies for increasing the performance of Convolutional Neural Networks with applications in the Computer Vision field. Understand the metrics used to evaluate complex networks, as well as visualizing the features learned by the networks.

8. Content

8.1 Course	Teaching methods	Remarks
Introduction to Computer Vision. Overview, history of computer vision, the three Rs of computer vision.	Interactive exposureExplanationConversationDidactical demonstration	
2. Image classification pipeline . Image classification pipeline, image features, filters, convolutions, linear classifiers.	Interactive exposureExplanationConversationDidactical demonstration	
3. Shallow neural networks. Optimization and loss functions.	Interactive exposureExplanationConversationDidactical demonstration	
4. Introduction to convolutional neural networks. Convolutional neural networks architectures. Elements of a convolutional convolutional neural network: convolutional layers, pooling layers, fully connected layer). Architectures: LeNet, AlexNet, VGG, Inception, Resnet.	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Sequential Models, Attention Mechanisms, Transformer Architecture.	Interactive exposure Explanation	

	Conversation Didactical demonstration
6. Training a Neural Network. Activation Functions, Weight Initialization, Hyperparameter Tuning, Transfer Learning.	Interactive exposure Explanation Conversation Didactical demonstration
7. Image Segmentation. Transposed Convolutions, Fully Convolutional Networks, U-Net Architecture, SegFormer, SAM.	 Interactive exposure Explanation Conversation Didactical demonstration
8. Generative networks . PixelRNN and PixelCNN, Variational Autoencoders (VAE), Generative Adversarial Networks (GAN).	 Interactive exposure Explanation Conversation Didactical demonstration
9. Object detection . Object Detection, Region Proposal, ROI Pooling. Convolutional and Transformer-Based Architectures for Object Detection	 Interactive exposure Explanation Conversation Didactical demonstration
10. Graph convolutional neural networks. Graphs, Message Passing, Applications in Computer Vision.	 Interactive exposure Explanation Conversation Didactical demonstration
11. Video Data Analysis . C3D, I3D, R(2+1)D, SlowFast, TimeSformer, Video Swin Transformer, ViViT, MViT, ActionFormer.	 Interactive exposure Explanation Conversation Didactical demonstration
12. Self-Supervised Learning, Zero-Shot Models. CLIP, BLIP, DINO.	 Interactive exposure Explanation Conversation Didactical demonstration
13. Case studies and demonstrations of state-of-the-art algorithms. Ethics in artificial intelligence. Debate.	 Interactive exposure Explanation Conversation Didactical demonstration
14. Exam	• Interactive exposure, conversation.

Bibliography

- 1. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.
- 2. Langr, Jakub, and Vladimir Bok. GANs in Action. (2018).
- 3. Trask, Andrew. *Grokking deep learning*. Manning Publications Co., 2019.
- 4. Prince, Simon JD. *Computer vision: models, learning, and inference*. Cambridge University Press, 2012.
- 6. Shapiro, Linda G., and George C. Stockman. *Computer vision*. Prentice Hall, 2001.
- 7. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists.* "O'Reilly Media, Inc.", 2016.
- 8. Gulli, Antonio, and Sujit Pal. *Deep learning with Keras*. Packt Publishing Ltd, 2017.
- 9. https://pytorch.org/docs/stable/index.html

8.2 Seminar / laboratory	Teaching methods	Remarks
Laboratory		
Strategies for solving computer vision problems. Introduction to <i>python</i> and <i>torch</i> .	 Interactive exposure Explanation Conversation Individual and group work Dialogue, debate 	The laboratory is structured as 2 hours per week, every other week
Implementing a linear classifier from scratch. Evaluation metrics.	 Interactive exposure Explanation Conversation Individual and group work Dialogue, debate 	

3. Optimization algorithms, unbalanced data, data	Interactive exposure
pre-processing, data generators in <i>torch</i> .	Explanation
Convolutional neural networks for	Conversation
classification.	Individual and group work
	Dialogue, debate
4. Transfer learning and fine tuning.	Interactive exposure
	Explanation
	Conversation
	Individual and group work
	Dialogue, debate
	Interactive exposure
5. Semantic segmentation I. Data Processing,	Explanation
Architecture Definition.	Conversation
	Individual and group work
	Dialogue, debate
6. Semantic segmentation II. Architecture	Interactive exposure
Implementation, Training.	Explanation
	Conversation
	Individual and group work
	Dialogue, debate
	Interactive exposure
7. Experiment tracking, Deployment.	Explanation
	Conversation
	Individual and group work
	Dialogue, debate
Project	
Phase 1	Interactive exposure
- each student should pick (or propose) a computer	• Explanation
vision problem for the project	Conversation
- discussion about the chosen projects	Individual and group work
- state of the art analysis (search for other methods that	Brainstorming
solve the same problem)	
- short presentation (by the teacher) of the possible	
computer vision project themes that could be solved	
using deep learning	
- presentation (by the teacher) of the methodology that	
needs to be followed for the project and of the available	
tools to achieve the project	
Phase 2	
- establishing the methodology that needs to be	
followed to solve the project	
- data gathering, data pre-processing	
- selection of the appropriate network architectures	
Phase 3	
- design and implementation of the project	
- design and implementation of the project	
- evaluation metrics implementation	
- visualization	
- implementation cont'd, evaluation, fine-tuning	
- project delivery, presentation, demo Bibliography	
l Kinlingranhy	

Bibliography

- 1. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists*. "O'Reilly Media, Inc.", 2016.
- 2. Gulli, Antonio, and Sujit Pal. *Deep learning with Keras*. Packt Publishing Ltd, 2017.
- 3. Anderson, John. *Hands On Machine Learning with Python*. CreateSpace Independent Publishing Platform, 2018.
- 4. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.
- 5. https://pytorch.org/docs/stable/index.html
- 6. https://www.tensorflow.org/api_docs

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors.
- The course exists in the studying program of all major universities in Romania and abroad.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
	 The student has a good understanding of the deep learning concepts. 	Written examination <u>at</u> the lecture in the last week of the semester.	50%
10.4 Course	 The ability to apply the course concepts in solving a real-life computer vision problem. 		
10.5 Seminar/laboratory	• The correct specification, design, implementation and evaluation of some computer vision problems based on deep learning.	Continuous observations Practical project	50%

10.6 Minimum standard of performance

- Students must prove that they acquired an acceptable level of knowledge and understanding of the core concepts taught in the class, that they are capable of using this knowledge in a coherent form, that they have the ability to establish certain connections and to use the knowledge in solving various computer vision problems.
- The final grade (average between written exam and project) should be at least 5 (no rounding)

11. Labels ODD (Sustainable Development Goals)1

Not applicable.

Date: April 27, 2025	Signature of course coordinator Lect. PhD. Diana Laura Borza	Signature of seminar coordinato Lect. PhD. Diana Laura Borza
Date of approval: 		Signature of the head of department

Assoc.prof.phd. Adrian STERCA

¹ Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>