SYLLABUS

Virtual instrumentation

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Computer Science
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	cipli	ne Virtual i	Virtual instrumentation			Discipline code	MLE5092
2.2. Course coordinator Prof.Dipl.Eng.PhD. Horia Hedeşiu							
2.3. Seminar coordi	inato	or	Prof.Dipl.Eng.PhD. Horia Hedeșiu				
2.4. Year of study	3	2.5. Semester	6	2.6. Type of evaluation	С	2.7. Discipline regime	Elective

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	5	of which: 3.2 course	2	3.3 seminar/laboratory/project	3
3.4. Total hours in the curriculum	3.4. Total hours in the curriculum 60 of which: 3.5 course 24 3.6 seminar/laboratory/projection			3.6 seminar/laboratory/project	36
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)				20	
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					15
Evaluations					10
Other activities:					-
3.7. Total individual study hours 65					
3.8. Total hours per semester	125				
3.9. Number of ECTS credits	5				

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	Class room with a video projector device, Internet connection	
5.2. for the seminar /lab activities	 Computers embedded systems myRIO accessories for myRIO systems: sensors, displays, connectors, passive and active electronic components 	

6.1. Specific competencies acquired ¹

Professional/essential competencies	•	development and maintenance of software systems use of software tools in an interdisciplinary context
Transversal competencies	•	Applying rules for an organized and efficient work, responsible attitude towards the didactic-scientific field for creative capitalization of one's own potential, complying to the principles and professional ethics norms. Utilizing efficient methods and techniques for learning, knowing, research and development of knowledge capitalization capacities, adapting to the requirements of a dynamic society and the communication in Romanian or an international language.

6.2. Learning outcomes

Knowledge	 The graduate has the necessary knowledge for using computers, developing software programs and applications, information processing. The graduate knows multiple programming languages and is able to write applications in compiled, interpreted or dynamic languages with the ability to choose the appropriate programming language for the specific application to be developed.
Skills	 The graduate has the ability to develop, design and create new applications, systems or products using best practices of the field. The graduate has the ability to understand and use design patterns for application development.
Responsibility and autonomy:	 The graduate has the ability to observe and obtain information from various sources. The graduate has the necessary knowledge to process and verify data and information.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Develop practical abilities to implement embedded systems, produce functional prototypes which may be used in applied research
7.2 Specific objective of the discipline	• Learning and understanding of the concepts and notions related to the graphical programming language G, respectively programming framework LabVIEW

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Virtual Instrumentation.	Exposure:description,	
System graphical design. Industrial Internet of	explanation,examples,	
Things	discussion of case studies	
2. Fundamentals of graphical programming in G	Exposure:description,	
1/3 virtual instruments, VI – Front Panel, Block	explanation,examples,	
Diagram, Tool Palette, structures, clusters,	discussion of case studies	
debuggi error management		
3.Fundamentals of graphical programming in G	Exposure:description,	
2/3: implement VI, document graphical code,	explanation,examples,	
timing issues, developing modular apps	discussion of case studies	
	Europuro description	
4. Fundamentals of graphical programming in	Exposure:description, explanation,examples,	
G 3/3: sequential programming, state machines,	discussion of case studies	
parallelism, multiple loops architectures,	discussion of case studies	
global variables, event driven programming		
5. Programming Real Time Systems:	Exposure:description,	
introduction, components, devices	explanation,examples,	
configuration	discussion of case studies	
6. Architecture of Real Time Systems:	Exposure:description,	
Host/Target, multithreading, execution control,	explanation,examples,	
timing control, interprocess communication	discussion of case studies	
7. Optimization of Real Time Applications:	Exposure:description,	
requirements analysis, Target constraints,	explanation,examples,	
communication in distributed systems,	discussion of case studies	
memory management and system monitoring,		
realibility, debugging, testing, deploying		
8. PFGA Systems: components, compilation,	Exposure:description,	
timing issues, Single-Cycle Loop execution	explanation,examples,	
	discussion of case studies	
9. Image processing using VI: Introduction to	Exposure:description,	
Machine Vision, image acquisition and display,	explanation,examples,	
calibration, measurements. Image	discussion of case studies	
identification, bar codes, optical recognition of		
graphical characters		
10. Human Machine Interface, data output on	Exposure:description,	
mobile devices: graphical interfaces, G web	explanation,examples,	
server, LabView WebServices, SCADA elements	discussion of case studies	
with applications, Data Dashboard		
11. Rapid Prototyping. MyRIO; emebedded	Exposure:description,	
systems in education: MyRIO; Measurements	explanation,examples,	
applications; Simple control Applications; IIoT	discussion of case studies	
and Embedded Systems		
12. Real Time Systems Modelling: Model-in-	Exposure:description,	
the-loop, SW-in-the-loop, HW-in-the-loop	explanation,examples,	
	discussion of case studies	
Dibli - marker	I	I

Bibliography

1. Horia Hedesiu, Radu Munteanu jr. –Introducere in Programare Grafica Instrumentala, ISBN 973-9357-48 Mediamira, Cluj-Napoca, 2003

2. Gabriel Chindris, Horia Hedesiu - Proiectarea Grafica a Sistemelor de Control Pentru Aplicatii Industriale, ISBN 978-973-713-242-0, Editura Mediamira Cluj-Napoca, 2009

3. National Instruments Corp – LabVIEW Core 1 Course Manual, 2013 Edition

4. National Instruments Corp – LabVIEW Core 2 Course Manual, 2013 Edition

5. National Instruments Corp – LabVIEW Core 3 Course Manual, 2013 Edition

6. Kye-Si Kwon, Steven Ready - Practical Guide to Machine Vision Software: An Introduction with LabVIEW, Jan. 2015 7. Blume, Peter A. - The LabVIEW Style book, ISBN 0-13-145835-3, Pearson Education, 2007

8.2 Seminar / laboratory	Teaching methods	Remarks		

1. Graphical programming in G 1/2	Explation, dialogue, case studies	
2. Graphical programming in G 2/2	Explation, dialogue, case studies	
3. Real Time Application development	Explation, dialogue, case studies	
4. Real Time Systems Architecture	Evaluation	
5. Image processing using VI	Explation, dialogue, case studies	
6. Rapid Prototyping	Explation, dialogue, case studies	
7. Final project turn-in	Evaluation	

Bibliography

1. Horia Hedesiu, Radu Munteanu jr. – Introducere in Programare Grafica Instrumentala, ISBN 973-9357-48 Mediamira, Cluj-Napoca, 2003

2. Gabriel Chindris, Horia Hedesiu - Proiectarea Grafica a Sistemelor de Control Pentru Aplicatii Industriale, ISBN 978-973-713-242-0, Editura Mediamira Cluj-Napoca, 2009

3. National Instruments Corp - LabVIEW Core 1 Course Manual, 2013 Edition

4. National Instruments Corp – LabVIEW Core 2 Course Manual, 2013 Edition

5. National Instruments Corp – LabVIEW Core 3 Course Manual, 2013 Edition

6. Kye-Si Kwon, Steven Ready - Practical Guide to Machine Vision Software: An Introduction with LabVIEW, Jan. 2015

7. Blume, Peter A. - The LabVIEW Style book, ISBN 0-13-145835-3, Pearson Education, 2007

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;

- The course exists in the studying programs of all major universities in Romania and abroad;
- The content of the course is considered by software companies as important for average programming skills

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade			
10.4 Course	Final project: architecture & design pattern application	Project grading	40%			
10.5 Seminar/laboratory	Lab Assignments -Mini-projects grading		60%			
10.6 Minimum standard of performance						
- A minimum passing grade is defined by attaining at least 50% (5/10) points for the final project and each of the three lab assignments respectively.						

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date:	Signature of course coordinator	Signature of seminar coordinator
	Prof.Dipl.Eng.PhD. Horia HEDESIU	Prof.Dipl.Eng.PhD. Horia HEDESIU

Date of approval:

...

Signature of the head of department Assoc.prof.phd. Adrian STERCA

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable.*".