SYLLABUS

Numerical Calculus

University year 2025-2026

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science
1.7 Form of education	Full-Time

2. Information regarding the discipline

2.1 Name of the discipline Nu			Numer	Imerical Calculus Discipline code			MLE0028			
2.2 Course coordinator			Pro	Prof. Sanda Micula, PhD. Habil.						
2.3 Seminar coordinator			Pro	Prof. Sanda Micula, PhD. Habil.						
2.4. Year of study 3 2.5 Seme			ester	6	2.6. Type of e	valuation	Ε	2.7 Type of discipline	DF	Compulsory

3. Total estimated time (hours/semester of didactic activities)

• •						
3.1 Hours per week	4	Of which: 3.2 cou	rse	2	3.3 seminar/laboratory	2 lab
3.4 Total hours in the curriculum	48	Of which: 3.5 cou	rse	24	3.6 seminar/laboratory	24
Time allotment for individual study (ID) and self-study activities (SA)					hours	
Learning using manual, course support, k	oiblio	graphy, course not	es (SA)			40
Additional documentation (in libraries, on electronic platforms, field documentation)					15	
Preparation for seminars/labs, homework, papers, portfolios and essays					35	
Tutorship					12	
Evaluations						25
Other activities:					-	
3.7 Total individual study hours 127					•	

3.7 10	tal mulvidual study nours	127
3.8 To	tal hours per semester	175
3.9 Nu	umber of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis
	Algebra
4.2. competencies	Logical thinking
	Average logical programming skills

5. Conditions (if necessary)

5.1. for the course	Lecture room with large blackboard and video projector
5.2. for the seminar /lab	Laboratory with Matlab installed
activities	

6. Specific competencies acquired

<u> </u>		
		C3.3 Use of computer science and mathematical models and tools for solving specific problems in the
a	ies	application field
ion	inc	C3.4 Data and model analysis
essi	ete	C4.1 Defining basic concepts, theory and mathematical models
Professional	competencies	C4.2 Interpretation of mathematical models
P	COI	C4.3 Identifying the appropriate models and methods for solving real-life problems
		C4.5 Embedding formal models in applications from various areas
		CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible
		approach towards the academic and scientific fields, in order to make the most of one's own creative
_	competencies	potential, while obeying the rules and principles of professional ethic
Transversal	enc	
Sve	oet	CT3 Using efficient methods and techniques for learning, information, research and developing
ans	i i	capabilities for using knowledge, for adapting to a dynamic society and for communicating in
Tr	S	Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire basic knowledge and concepts of Numerical Analysis, with main focus on applications Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Become familiar and be able to work with various numerical algorithms and models Gain the ability to apply numerical algorithms to solve practical and real-life problems. Ability to use approximation and numerical features of various mathematical software

8. Content

8.1 Co	urse	Teaching methods	Remarks
1.	Preliminaries. Taylor polynomials. Errors, sources, propagation. Stability and conditioning of a problem. Divided and finite differences.	Interactive exposure, description, explanation, conversation, didactical demonstration	
2.	Solution of systems of linear algebraic equations. Direct methods. Gaussian elimination. Backward and forward substitution. Factorization (LU, LUP, QR, Cholesky) methods. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration	
3.	Iterative methods. Jacobi and Gauss-Seidel methods. SOR method. Conditioning of a linear system. Ill- conditioned matrices.	Interactive exposure, description, explanation, conversation, didactical demonstration	
4.	Approximation of functions. Polynomial interpolation. Lagrange interpolation, Lagrange fundamental polynomials. Error in Lagrange interpolation. Optimal choice of nodes. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration	
5.	Efficient computation of interpolation polynomials. Barycentric formula. Newton's divided and finite differences interpolation. Aitken's algorithm. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration	
6.	Hermite interpolation. Interpolation with double nodes. General case. Error in Hermite interpolation. Special cases.	Interactive exposure, description, explanation,	

	conversation, didactical
	demonstration
7. Birkhoff interpolation. Birkhoff fundamental	Interactive exposure,
polynomials. Peano's theorem and the error in Birkhoff	description, explanation,
interpolation. Examples.	conversation, didactical
	demonstration
8. Spline interpolation. Linear and cubic splines.	Interactive exposure,
Properties. Least squares approximation. Orthogonal	description, explanation,
polynomials.	conversation, didactical
	demonstration
9. Numerical differentiation and integration. Numerical	Interactive exposure,
differentiation formulas. Examples. Interpolatory and	description, explanation,
Newton-Cotes quadratures. Composite rectangle,	conversation, didactical
trapezoidal and Simpson's rules. Examples. Adaptive	demonstration
quadratures.	
10. Richardson extrapolation. Iterated quadratures.	Interactive exposure,
Romberg's method. Gaussian quadratures. Families of	description, explanation,
orthogonal polynomials. Examples.	conversation, didactical
	demonstration
11. Rootfinding for nonlinear equations. Iterative	Interactive exposure,
methods. Order of convergence. Bisection, secant and	description, explanation,
Newton's methods. Comparison between Newton's	conversation, didactical
and secant methods. Aitken extrapolation. One-point	demonstration
iteration methods, successive approximations.	
Examples.	
12. Newton's method for multiple roots. Newton's method	Interactive exposure,
for nonlinear systems. Examples.	description, explanation,
	conversation, didactical
	demonstration
 K. E. Atkinson, An Introduction to Numerical Analysis, John Wil K. E. Atkinson, W. Han, Elementary Numerical Analysis, Third E S. Micula, R. Sobolu, M. Micula, Numerical Analysis with Maple R. Trîmbitaş, Numerical Analysis in Matlab, Cluj University Press W. Gautschi, Numerical Analysis, An Introduction, Birkhaeuser 	dition, John Wiley and Sons Inc., 2004. e (rom.), Academic Press, Cluj-Napoca, 2008. ss, 2008.
6. Gh. Coman, I. Chiorean, T. Cătinaş, Numerical Analysis, An Adv	anced Course, Cluj University Press, 2007.
8.2 Laboratory	Teaching methods Remarks
1. Review of Matlab.	Interactive exposure,
	explanation, conversation,
	individual and group work
2. Taylor polynomials. Errors.	Interactive exposure,
2. Taylor polynomials. Errors.	explanation, conversation,
	· · ·
2 Nowton's divided and finite differences	individual and group work
3. Newton's divided and finite differences.	Interactive exposure,
	explanation, conversation,
	individual and group work
4. Linear algebraic systems I. Gaussian elimination.	Interactive exposure,
Factorizations. Backward and forward substitution.	explanation, conversation,
	individual and group work
5. Linear algebraic systems II. Iterative methods. Jacobi,	Interactive exposure,
Gauss-Seidel, SOR methods.	explanation, conversation,
	individual and group work
6. Lagrange interpolation I. Lagrange fundamental	Interactive exposure,
polynomials. Barycentric formula.	explanation, conversation,
	individual and group work

7. Lagrange interpolation II. Newton's form. Aitken's algorithm.	Interactive exposure, explanation, conversation, individual and group work
 Hermite interpolation with double nodes. Summary and review of polynomial interpolation. 	Interactive exposure, explanation, conversation, individual and group work
 Cubic spline interpolation. Least squares approximation. 	Interactive exposure, explanation, conversation, individual and group work
10. Numerical Integration I. Newton-Cotes quadratures. Adaptive quadratures.	Interactive exposure, explanation, conversation, individual and group work
 Numerical Integration II. Romberg's method. Gaussian quadratures. 	Interactive exposure, explanation, conversation, individual and group work
12. Numerical methods for nonlinear equations.	Interactive exposure, explanation, conversation, individual and group work

Bibliography

1. K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons Inc., 1988.

2. K. E. Atkinson, W. Han, Elementary Numerical Analysis, Third Edition, John Wiley and Sons Inc., 2004.

3. S. Micula, R. Sobolu, M. Micula, Numerical Analysis with Maple (rom.), Academic Press, Cluj-Napoca, 2008.

4. R. Trîmbitaş, Numerical Analysis in Matlab, Cluj University Press, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The problem solving abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles and notions in Numerical Analysis; apply correctly the course concepts on various applications problem solving 	Written exam	70%
10.5 Lab activities	 be able to implement course concepts and notions apply numerical algorithms to solve practical and real- life problems 	 participation in discussing and solving problems throughout the semester 	30%
10.6 Minimum performa	ance standards		
 A grade of 5 or a lab evaluation) 	above (on a scale from 1 to 10) on <u>e</u>	each of the activities mentioned	above (written exam,

11. Labels ODD (Sustainable Development Goals)¹

General label for Sustainable Development							
							9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

Date	Signature of course coordinator	Signature of seminar coordinator
29.04.2025	Prof. Sanda Micula, PhD. Habil.	Prof. Sanda Micula, PhD. Habil.

Date of approval

Signature of the head of department

Prof. dr. Andrei Mărcuş

¹ Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable.*".