
SYLLABUS

Parallel and Distributed Programming

University year 2025/2026

1. Information regarding the programme

1.1. Higher education institution Babeş Bolyai University
1.2. Faculty Faculty of Mathematics and Computer Science
1.3. Department Department of Computer Science
1.4. Field of study Computer Science
1.5. Study cycle Bachelor
1.6. Study programme/Qualification Computer Science
1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Parallel and Distributed Programming Discipline code MLE5077
2.2. Course coordinator Lect. PhD. Radu Lupşa
2.3. Seminar coordinator Lect. PhD. Radu Lupşa
2.4. Year of study 3 2.5. Semester 5 2.6. Type of evaluation E 2.7. Discipline regime Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week 5 of which: 3.2 course 2
3.3
seminar/laboratory/project

0/2/1

3.4. Total hours in the curriculum 70 of which: 3.5 course 28
3.6
seminar/laboratory/project

42

Time allotment for individual study (ID) and self-study activities (SA) hours
Learning using manual, course support, bibliography, course notes (SA) 10
Additional documentation (in libraries, on electronic platforms, field documentation) 10
Preparation for seminars/labs, homework, papers, portfolios and essays 20
Tutorship 10
Evaluations 5
Other activities: -
3.7. Total individual study hours 55
3.8. Total hours per semester 125
3.9. Number of ECTS credits 5

4. Prerequisites (if necessary)

4.1. curriculum
Programming Fundamentals, Object Oriented Programming, Data Structures and Algorithms,
Operating Systems

4.2. competencies Programming abilities

5. Conditions (if necessary)
5.1. for the course Lecture room with videoprojector
5.2. for the seminar /lab activities Room with videoprojector; computers with IDEs for C++, Python, Java and C#
6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

P
ro

fe
ss

io
n

al
/e

ss
en

ti
al

co
m

p
et

en
ci

es

 use of theoretical foundations of computer science as well as of formal models
 use of software tools in an interdisciplinary context

T
ra

n
sv

er
sa

l
co

m
p

et
en

ci
es  application of organized and efficient work rules, of responsible attitudes towards the didactic-

scientific field, to bring creative value to own potential, with respect for professional ethics principles
and norms

 use of efficient methods and techniques to learn, inform, research and develop the abilities to bring
value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently
in Romanian language and in an international language

6.2. Learning outcomes

K
n

ow
le

d
ge The graduate has the necessary knowledge for using computers, developing software programs and

applications, information processing.
The graduate has knowledge related to programming, mathematics, engineering and technology and has the
skills to use them to create complex information technology systems.

Sk
il

ls The graduate has the necessary skills for computer program design and software systems analysis.
The graduate has the ability to apply general rules to specific problems and produce relevant solutions.

R
es

p
on

si
b

il
it

y
an

d
 a

u
to

n
om

y:

The graduate is able to identify complex problems and examine related issues to develop solving options and
implement solutions.
The graduate is able to combine diverse information to formulate solutions and generate ideas for developing
new products and applications.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

 Aquiring the main concepts of concurrent, parallel and distributed
programming;

 Basics of communication between processes and threads, on the same
machine or on distinct machines;

 Knowing basic techniques of parallel programming;
 Knowing and using parallel application design patterns
 Knowing and using the existing frameworks for developing parallel and

distributed applications

7.2 Specific objective of the
discipline

 Parallel architectures and parallel programming systems
 Know how to use parallel programming techniques in problem solving
 Know how to evaluate the performance increase obtained by parallelization
 Ability to work independent or in a team in order to solve problems in a

parallel and/or distributed context

8. Content

8.1 Course Teaching methods Remarks
C1. General introduction. Necessity to use
parallelism. Concurrent vs parallel vs
distributed computing

Exposure: description,
explanation, examples, debate.

C2. Parallel architectures: pipeline, vectorial
machines, grid and cluster computing.

Exposure: description,
explanation, examples, debate.

C3. Threads. Race conditions, mutual exclusion,
deadlocks. Synchronization primitives.

Exposure: description,
explanation, examples, debate.

C4. Producer-consumer parallelism. Low-level
primitives (condition variables) and high-level
mechanisms (futures, producer-consumer
queues)

Exposure: description,
explanation, examples, debate.

C5-C6. Asynchronous programming. Futures
with continuations. Coroutines.

Exposure: description,
explanation, examples, debate.

C7. Basic parallel algorithms. Exposure: description,
explanation, examples, debate.

C8. Recursive decomposition and parallel
explore algorithms.

Exposure: description,
explanation, examples, debate.

C9. Distributed programming using MPI Exposure: description,
explanation, examples, debate.

C10. Distributed recursive decomposition and
parallel explore.

Exposure: description,
explanation, examples, debate.

C11. Distributed protocols. Lamport clocks. Exposure: description,
explanation, examples, debate.

C12. Distributed shared memory. Exposure: description,
explanation, examples, debate.

C13. GPGPU programming. OpenCL. Exposure: description,
explanation, examples, debate.

C14. Fault tolerance Exposure: description,
explanation, examples, debate.

Bibliography
 http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/
 Ian Foster. Designing and Building Parallel Programs, Addison-Wesley 1995.
 Michael McCool, Arch Robinson, James Reinders, Structured Parallel Programming: Patterns for Efficient

Computation,” Morgan Kaufmann,, 2012 .
 Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders,Addison A Pattern Language for Parallel

Programming. Wesley Software Patterns Series, 2004.
 Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing, Addison Wesley, 2003.
 D. Grigoras. Calculul Paralel. De la sisteme la programarea aplicatiilor. Computer Libris Agora, 2000.
 V. Niculescu. Calcul Paralel. Proiectare si dezvoltare formala a programelor paralele. Presa Univ. Clujana, 2006.
 D.B. Skillicorn, D. Talia. Models and Languages for Parallel Computation. ACM Computer Surveys, 30(2) pg.123-

136, June 1998.
 B. Wilkinson, M. Allen, Parallel Programming Techniques and Applications Using Networked Workstations and

Parallel Computers, Prentice Hall, 2002
 E.F. Van de Velde. Concurrent Scientific Computing. Spring-Verlag, New-York Inc. 1994.
 Boian F.M. Ferdean C.M., Boian R.F., Dragos R.C. Programare concurenta pe platforme Unix, Windows, Java. Ed.

Albastra, grupul Microinformatica, Cluj, 2002 .
 OpenMP Tutorials
 MPI Tutorials
 OpenCL Tutorials

8.2 Seminar / laboratory Teaching methods Remarks

L1. Introduction Dialogue, debate, examples,
guided discovery.

L2-L3. Synchronization primitives. Dialogue, debate, examples,
guided discovery.

L4. Producer-consumer parallelism. Dialogue, debate, examples,
guided discovery.

L5-L6. Asynchronous programming Dialogue, debate, examples,

guided discovery.

L7. Basic parallel algorithms Dialogue, debate, examples,
guided discovery.

L8. Recursive decomposition Dialogue, debate, examples,
guided discovery.

L9. Parallel explore Dialogue, debate, examples,
guided discovery.

L10. Basic distributed algorithms with MPI Dialogue, debate, examples,
guided discovery.

L11. Recursive decomposition and parallel
explore with MPI

Dialogue, debate, examples,
guided discovery.

L12. Distributed shared memory. Dialogue, debate, examples,
guided discovery.

L13. OpenCL Dialogue, debate, examples,
guided discovery.

L14. Finalizing lab activities Dialogue, debate, examples,
guided discovery.

Bibliography
 Eckel, B., Thinking in Java, 4th Edition, New York: Prentice Hall, 2006.
 Larman, C.: Applying UML and Design Patterns: An Introduction to OO Analysis and Design, Berlin: Prentice Hall,

2004.
 Fowler, M., Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.
 E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns – Elements of Reusable Object Oriented Software, Ed.

Addison Wesley, 1994.
 Walls, Craig, Spring in Action, Third Edition, Ed. O’Reilley, 2011.
 Kent Beck, Test Driven Development: By Example, Ed. Addison-Wesley Professional, 2002.
 http://download.oracle.com/javase/tutorial/
 http://msdn.microsoft.com/en-us/library/aa288436%28v=vs.71%29.aspx
 http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

 The course follows ACM and IEEE recommendations for computer science studies
 The course is part of the curricula in all major universities, both local and abroad
 The software companies consider the course content important for acquiring advanced programming abilities.

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

Knowing basic concepts Written exam 50%
Applying theoretical
knowledge in problem
solving

Semester project 20%

10.5 Seminar/laboratory

Applying theoretical
knowledge in problem
solving

Evaluation of lab
assignments 30%

10.6 Minimum standard of performance

 At least 12 out of 14 attendances at the labs

http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/

 At least grade 5 (out of 10) for the written exam

 At least grade 5 (out of 10) for the final average.

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

Date:
...

Signature of course coordinator

.....................

Signature of seminar coordinator

.....................

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the
discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no
label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

	1.1. Higher education institution
	Babeş Bolyai University
	1.2. Faculty

	Faculty of Mathematics and Computer Science
	1.3. Department
	Department of Computer Science
	Computer Science
	Bachelor
	1.6. Study programme/Qualification

	Computer Science
	1.7. Form of education

	Full time
	3.1. Hours per week
	3.4. Total hours in the curriculum
	42
	Time allotment for individual study (ID) and self-study activities (SA)
	hours
	10
	Additional documentation (in libraries, on electronic platforms, field documentation)
	10
	Preparation for seminars/labs, homework, papers, portfolios and essays
	20
	Tutorship
	10
	Evaluations
	5
	Other activities:
	-
	3.7. Total individual study hours
	55
	3.8. Total hours per semester
	125
	3.9. Number of ECTS credits
	5

