
SYLLABUS

Formal Languages and Compiler Design

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babeş Bolyai University

1.2. Faculty
Faculty of Mathematics and Computer Science

1.3. Department Department of Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Bachelor

1.6. Study programme/Qualification Computer Science

1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Formal Languages and Compiler Design Discipline code MLE5023

2.2. Course coordinator Prof.PhD. Simona Motogna

2.3. Seminar coordinator Prof.PhD. Simona Motogna

2.4. Year of study 3 2.5. Semester 5 2.6. Type of evaluation E 2.7. Discipline regime Mandatory

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum Data Structures and Algorithms

4.2. competencies Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course Course room with projector

5.2. for the seminar /lab activities
Laboratory with computers; high level programming language environment (.NET
or any Java/Python environment a.s.o.)

6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 6 of which: 3.2 course 2
3.3
seminar/laboratory/project

2 sem
+ 2 lab

3.4. Total hours in the curriculum 84 of which: 3.5 course 28
3.6
seminar/laboratory/project

56

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 15

Additional documentation (in libraries, on electronic platforms, field documentation) 8

Preparation for seminars/labs, homework, papers, portfolios and essays 10

Tutorship 3

Evaluations 5

Other activities: -

3.7. Total individual study hours 41

3.8. Total hours per semester 125

3.9. Number of ECTS credits 5

P
ro

fe
ss

io
n

a
l/

e
ss

e
n

ti
a

l
co

m
p

e
te

n
ci

e
s

• advanced programming skills in high-level programming languages
• use of theoretical foundations of computer science as well as of formal models

T
ra

n
sv

e
rs

a
l

co
m

p
e

te
n

ci
e

s • application of organized and efficient work rules, of responsible attitudes towards the didactic-
scientific field, to bring creative value to own potential, with respect for professional ethics principles
and norms

• use of efficient methods and techniques to learn, inform, research and develop the abilities to bring
value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently
in Romanian language and in an international language

6.2. Learning outcomes

K
n

o
w

le
d

g
e

- The graduate has knowledge related to programming, mathematics, engineering and technology and has the
skills to use them to create complex information technology systems.
- The graduate has the knowledge to select and use appropriate instructional procedures to facilitate the
process of knowledge assimilation.

S
k

il
ls

- The graduate is able to present and explain methods, algorithms, paradigms and techniques used in various
branches of computer science.
- The graduate is able to identify complex problems and examine related issues to develop solving options and
implement solutions.
- The graduate is able to combine diverse information to formulate solutions and generate ideas for developing
new products and applications.

R
e

sp
o

n
si

b
il

it
y

a

n
d

 a
u

to
n

o
m

y
:

- The graduate has the ability to apply general rules to specific problems and produce relevant solutions.
- The graduate has the ability to choose and use programming paradigms (procedural, object-oriented,
functional) to develop software applications appropriate for the specific domain of the application being
developed.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

• Be able to understand compiler design and to implement compiler techniques
• Improved programming skills

7.2 Specific objective of the
discipline

• Acquire knowledge about back-end of a compiler
• Understand and work with formal languages concepts: Chomsky hierarchy; regular grammars, finite

automata and the equivalence between them; context-free grammars, push-down automata and
their equivalence

• Understand and work with compilers concepts: scanning, parsing

8. Content

8.1 Course Teaching methods Remarks

1. General Structure of a compiler. Compiler
phases

Exposure: description,
explanation, examples, discussion
of case studies

2. Scanning (Lexical Analysis)
Exposure: description,
explanation, examples, discussion
of case studies

3. Introductory notions of formal languages.
Grammars and Finite Automata

Exposure: description,
explanation, examples, debate,
dialogue

4. Regular languages, regular expressions,
equivalence between finite automata, regular
grammars and regular expressions.
Pumping lemma

Exposure: description,
explanation, examples,
proofs

5. Context-free grammars, syntax tree
Exposure: description,
explanation, examples, discussion
of case studies

6. Parsing: general notions, classification.
Exposure: description,
explanation, examples, discussion
of case studies

7. Recursive-descendant parser
Exposure: description,
explanation, examples, discussion
of case studies

8. LL(1) parser
Exposure: description,
explanation, examples, discussion
of case studies

9. LR(k) parsing method. LR(0) parser
Exposure: description,
explanation, examples, discussion
of case studies

10. SLR, LR(1), LALR parser
Exposure: description,
explanation, examples, discussion
of case studies

11. Scanner generator (lex); Parser generators
(yacc)

Exposure: description, examples,
discussion of case studies, live
demo

12. Attribute grammars; generation of
intermediary code

Exposure: description,
explanation, examples, discussion
of case studies

13. Code optimization and object code
generation

Exposure: description,
explanation, examples, discussion
of case studies

14. Push-down automata and Turing machines
Exposure: description,
explanation, examples, discussion
of case studies

Bibliography
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.
3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.
4. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
5. SIPSER, M., Introduction to the theory of computation, PWS Pulb. Co., 1997
6. CSO RNYEI ZOLTA N, Bevezete s a fordí to programok elme lete be, I, II., ELTE, Budapest, 1996
7. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.
8. CSO RNYEI ZOLTA N, Fordí ta si algoritmusok, Erde lyi Tanko nyvtana cs, Kolozsva r, 2000.
9. DEMETROVICS JA NOS-DENEV, J.-PAVLOV, R., A sza mí ta studoma ny matematikai alapjai, Nemzeti Tanko nyvkiado ,
Budapest, 1999
10. GRUNE, DICK - BAL, H. - JACOBS, C. - LANGENDOEN, K.: Modern Compiler Design, John Wiley, 2000

8.2 Seminar / laboratory Teaching methods Remarks

1. Specification of a programming language; BNF notation

Explanation, dialogue, case
studies

2. Grammars; language generated by a
grammar; grammar corresponding to a
language

Dialogue, debate, case studies,
examples, proof

3. Finite automata: language generated by a FA;
FA corresponding to a language

Dialogue, debate, case studies,
examples, proof

4. Transformations: finite automata – regular
grammars

Dialogue, debate, case studies,
examples, proof

5. Transformations: regular expressions –
finite automata

Dialogue, debate, case studies,
examples, proof

6. Transformations: regular expressions –
regular grammars

Dialogue, debate, case studies,
examples, proof

7. Context free grammars; descendent
recursive parser

Dialogue, debate, case studies,
examples, proof

8. LL(1) parser
Dialogue, debate, case studies,
examples, proof

9. LR(0) parsers
Dialogue, debate, case studies,
examples, proof

10. SLR parser
Dialogue, debate, case studies,
examples, proof

11. LR(1) parser
Dialogue, debate, case studies,
examples, proof

12. Attribute grammars
Dialogue, debate, case studies,
examples, proof

13. Intermediary code
Dialogue, debate, case studies,
examples, proof

14. Push down automata
Dialogue, debate, case studies,
examples, proof

Laboratory

Task 1: Specify a mini-language and implement
scanner 1.1: Mini language specification (BNF
notation)

Explanation, dialogue, case
studies

Task 1: Specify a mini-language and implement
scanner 1.2: implement main functions in
scanning

Explanation, dialogue, case
studies

Task 1: Specify a mini-language and implement
scanner 1.3: Symbol Table organization

Testing data discussion,
evaluation

Task 2: regular grammars + finite automata +
transformations
2.1: Define data structures for RG and FA;
implement transformations

Explanation, dialogue, case
studies

Task 2: regular grammars + finite automata +
transformations
2.2: Main program, testing + delivery

Testing data discussion,
evaluation

Task 3: context free grammars + equivalent
transformations of cfg
 3.1: extend task 2 for cfg; implement
transformations

Explanation, dialogue, case
studies

Task 3: context free grammars + equivalent
transformations of cfg
3.2: Main program, testing + delivery

Testing data discussion,
evaluation

Task 4: Parser implementations
 4.1: define data structures and architecture of
application

Explanation, dialogue, case
studies

One of: descendant recursive,
LL(1), LR(0), SLR

Task 4: Parser implementations
 4.2: implement main functions in parsing

Explanation, dialogue, case
studies

Task 4 is developed in teams of 2
students (teamwork)

Task 4: Parser implementations
 4.3: main program and module integration

Explanation, dialogue, case
studies

Task 4: Parser implementations
4.4: testing on small formal grammars

Testing data discussion,
evaluation

Task 4: Parser implementations
 4.5: testing on mini-language; delivery

Testing data discussion,
evaluation

Task 5: use tools for lexer and parser
generator: lex, yacc – implementation +
delivery

Explanation, dialogue, case
studies

Bibliography:
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.
3. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
4. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ. Babes-Bolyai, Cluj-
Napoca, 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
• The course exists in the studying program of all major universities in Romania and abroad;

• The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

- know the basic principle of
 the domain;
- apply the course concepts
- problem solving

Written exam 60%

10.5 Seminar/laboratory

- be able to apply algorithms,
understand examples -
problem solving

problems solved -
homeworks delivered -
continuous observations
during semester

10%

- be able to implement course
concepts and algorithms
 - apply techniques for
different classes of
programming languages

-Practical examination during all semester -
documentation -portofolio
 -continous observations

30%

10.6 Minimum standard of performance

• Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester
• At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.
• Understand basic concepts of formal languages: grammars, finite automata; be able to apply scanning and

parsing algorithms

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

Date:

12.04.2025

Signature of course coordinator

Prof.dr. Simona Motogna

Signature of seminar coordinator

Prof.dr. Simona Motogna

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the

discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no

label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

