
SYLLABUS

Software engineering

University year 2024-2027

1. Information regarding the programme

1.1. Higher education institution Babes Bolyai University

1.2. Faculty Faculty of Mathematics and Computer Science

1.3. Department Department of Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Bachelor

1.6. Study programme/Qualification Computer Science

1.7. Form of education

2. Information regarding the discipline

2.1. Name of the discipline Software engineering Discipline code MLE5011

2.2. Course coordinator Lect. Dr. Zsigmond Imre

2.3. Seminar coordinator Lect. Dr. Zsigmond Imre

2.4. Year of study 2 2.5. Semester 2 2.6. Type of evaluation C 2.7. Discipline regime DF

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum Advance programming methods, Databases

4.2. competencies
Average programming skills in a high-level object-oriented programming
language

5. Conditions (if necessary)

5.1. for the course Projector

5.2. for the seminar /lab activities Projector

6.1. Specific competencies acquired 1

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

3.1. Hours per week 5 of which: 3.2 course 2
3.3
seminar/laboratory/project

3

3.4. Total hours in the curriculum 70 of which: 3.5 course 28
3.6
seminar/laboratory/project

42

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 24

Additional documentation (in libraries, on electronic platforms, field documentation) 12

Preparation for seminars/labs, homework, papers, portfolios and essays 24

Tutorship 10

Evaluations 10

Other activities:

3.7. Total individual study hours 80

3.8. Total hours per semester 150

3.9. Number of ECTS credits 6

P
ro

fe
ss

io
n

a
l/

e
ss

e
n

ti
a

l
co

m
p

e
te

n
ci

e
s C2.3 - Ability to work independently and in a team in order to develop software

complying with industrial standards.

• C2.5 - Understanding the role of different artifacts used in the process of software
development and acquiring the ability of realizing and using these artifacts

T
ra

n
sv

e
rs

a
l

co
m

p
e

te
n

ci
e

s CT2 - Ability to create software beginning with model construction, continuing with

model verification and model transformation in code, realizing and using testing

models

• CT3 - Ability to use a software methodology to produce quality software from
analyzing software requirements to code generation and software testing

6.2. Learning outcomes

K
n

o
w

le
d

g
e

The student knows: industry standard techniques for designing, implementing, testing, and maintaining
complex software systems. Acquired knowledge includes project life cycle, a small number of uml diagrams,
requirements gathering, working with tasks, using git in a team, expanded C# with .NET knowledge, desktop
development with WinUI, and web development with ASP.NET (MVC & API), entity framework use, regular and
mocked unit tests, several design patterns, and architectural patterns

S
k

il
ls

 The student is able to work in small to medium sized teams (6-30 team members). Student acquired or
expanded upon the following skills: Requirements engineering, UML, Working in teams, Git, GUI/Design,
Software architectures, C# + .NET, Code quality, Communication skill, Unit testing, Database access, Web
development, Design patterns, Deployment, Clean code

R
e

sp
o

n
si

b
il

it
y

a

n
d

 a
u

to
n

o
m

y
:

The student has the ability to work in a team to craft quality software.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

• Be able to understand software production life cycle
• Improved skills on developing software

7.2 Specific objective of the
discipline

• Be able to develop software as a team
• Understand the best practices deployed in the software industry
• Be able to better communicate with others on technical matters
• Understand various software architectures

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to Software engineering Exposure: description, explanation,

examples, discussion of case studies

2. Software design Exposure: description, explanation,
examples, discussion of case studies

3. Working in teams
Exposure: description, explanation,
examples, discussion of case studies

4. C# + .NET with WinUI
Exposure: description, explanation,
examples, discussion of case studies

5. Code quality
Exposure: description, explanation,
examples, discussion of case studies

6. Unit testing
Exposure: description, explanation,
examples, discussion of case studies

7. Design patterns
Exposure: description, explanation,
examples, discussion of case studies

8. Dependency management
Exposure: description, explanation,
examples, discussion of case studies

9. ASP.NET MVC
Exposure: description, explanation,
examples, discussion of case studies

10. Working with servers
Exposure: description, explanation,
examples, discussion of case studies

11. Software projects and project management
Exposure: description, explanation,
examples, discussion of case studies

12. Software architectures
Exposure: description, explanation,
examples, discussion of case studies

13. Hiring process
Exposure: description, explanation,
examples, discussion of case studies

14. Exam
Exposure: description, explanation,
examples, discussion of case studies

Bibliography
1. Andrew Troelsen, Phil Japikse: Pro C# 10 with .NET 6
2. Robert C. Martin: Clean code
3. Robert C. Martin: Clean architecture
4. Roy Osherove: The art of unit testing
5. Scott Chacon: Pro Git
6. Martin Fowler: Patterns of Enterprise Application Architecture
7. Bruce M. Van Horn II: Real-World Implementation of C# Design Patterns
8. Adam Freeman: Pro ASP.NET Core 6
9. Konstantin Semenenko: C# Interview Guide

8.2 Seminar Teaching methods Remarks

1. Requirements gathering Explanation, Dialogue, debate,
case studies, examples, proofs

2. Paper prototyping Explanation, Dialogue, debate,
case studies, examples, proofs

3. Git use in teams Explanation, Dialogue, debate,
case studies, examples, proofs

4. Generative AI use Explanation, Dialogue, debate,
case studies, examples, proofs

5. Deploy to server Explanation, Dialogue, debate,
case studies, examples, proofs

6. Code generation Explanation, Dialogue, debate,
case studies, examples, proofs

7. Project support Explanation, Dialogue, debate,
case studies, examples, proofs

8.3 Laboratory Explanation, Dialogue, debate,
case studies, examples, proofs

1. Environment setup and C# Explanation, Dialogue, debate,
case studies, examples, proofs

2. Planning initial version of project with the use of
uml and project management techniques

Explanation, Dialogue, debate,
case studies, examples, proofs

3. Software development in teams Explanation, Dialogue, debate,
case studies, examples, proofs

4. Code review, refactoring, unit and integration
testing

Explanation, Dialogue, debate,
case studies, examples, proofs

5. Client server development in larger teams Explanation, Dialogue, debate,
case studies, examples, proofs

6. Web development Explanation, Dialogue, debate,
case studies, examples, proofs

7. Multi-platform support in even larger teams Explanation, Dialogue, debate,
case studies, examples, proofs

Bibliography
1. Andrew Troelsen, Phil Japikse: Pro C# 10 with .NET 6

2. Robert C. Martin: Clean code

3. Robert C. Martin: Clean architecture

4. Roy Osherove: The art of unit testing

5. Scott Chacon: Pro Git

6. Martin Fowler: Patterns of Enterprise Application Architecture

7. Bruce M. Van Horn II: Real-World Implementation of C# Design Patterns

8. Adam Freeman: Pro ASP.NET Core 6

9. Konstantin Semenenko: C# Interview Guide

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curricula Recommendations for Computer Science

Studies;

• The course exists in the studying program of all major universities in Romania and abroad;

• The content of the course contains knowledge mandatory for any IT specialist working in a

software company

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course
Know the presented

concepts & SE principles
Team project 0%

10.5 Seminar/laboratory

Be able to implement

acknowledged knowledge

in producing software

Team project 100%

10.6 Minimum standard of performance

•

11. Labels ODD (Sustainable Development Goals)

Not applicable.

Date:
01/05/2025

Signature of course coordinator

.....................

Signature of seminar coordinator

........

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

