
SYLLABUS

FUNCTIONAL AND LOGIC PROGRAMMING

University year 2025/2026

1. Information regarding the programme
1.1. Higher education institution Babeș-Bolyai University
1.2. Faculty Mathematics and Computer Science
1.3. Department Computer Science
1.4. Field of study Computer Science
1.5. Study cycle Bachelor
1.6. Study programme/Qualification Computer Science
1.7. Form of education Full time studies

2. Information regarding the discipline
2.1. Name of the discipline Functional and Logic Programming Discipline code MLE5009
2.2. Course coordinator Prof. dr. Horia F. Pop
2.3. Seminar coordinator Prof. dr. Horia F. Pop
2.4. Year of study 2 2.5. Semester 3 2.6. Type of evaluation C 2.7. Discipline regime Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week 4 of which: 3.2 course 2 3.3
seminar/laboratory/project 2

3.4. Total hours in the curriculum 56 of which: 3.5 course 28 3.6
seminar/laboratory/project 28

Time allotment for individual study (ID) and self-study activities (SA) hours
Learning using manual, course support, bibliography, course notes (SA) 22
Additional documentation (in libraries, on electronic platforms, field documentation) 18
Preparation for seminars/labs, homework, papers, portfolios and essays 27
Tutorship 11
Evaluations 16
Other activities:
3.7. Total individual study hours 94
3.8. Total hours per semester 150
3.9. Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum
MLE5005: Programming Fundamentals
MLE5055: Computational Logic
MLE5022: Data Structures and Algorithms

4.2. competencies Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course
Students will attend the course with their mobile phones shut down
Students will attend the course with their laptops shut down; students with special
needs will discuss these at the beginning of the semester

5.2. for the seminar /lab activities
Students will attend the lab with their mobile phones shut down
Laboratory with computers; high level declarative programming language
environment (CLisp, SWIProlog)

6.1. Specific competencies acquired 1

Pr
of

es
si

on
al

/e
ss

en
ti

al
Co

m
pe

te
nc

ie
s

• advanced programming skills in high-level programming languages
• use of theoretical foundations of computer science as well as of formal models

Tr
an

sv
er

sa
l

co
m

pe
te

nc
ie

s

• application of organized and efficient work rules, of responsible attitudes towards the didactic-scientific field, to
bring creative value to own potential, with respect for professional ethics principles and norms
• use of efficient methods and techniques to learn, inform, research and develop the abilities to bring value to
knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently in Romanian
language and in an international language

6.2. Learning outcomes

K
no

w
le

dg
e • The graduate has the necessary knowledge for using computers, developing software programs and

applications, information processing.
• The graduate knows multiple programming languages and is able to write applications in compiled, interpreted
or dynamic languages with the ability to choose the appropriate programming language for the specific
application to be developed.

Sk
ill

s • The graduate is able to present and explain methods, algorithms, paradigms and techniques used in various
branches of computer science.
• The graduate has the ability to apply general rules to specific problems and produce relevant solutions.

Re
sp

on
si

bi
lit

y
an

d
au

to
no

m
y:

• The graduate has the ability to choose and use programming paradigms (procedural, object-oriented,
functional) to develop software applications appropriate for the specific domain of the application being
developed.
• The graduate has the ability to understand and communicate information effectively.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

Get accustomed with basic notions, concepts, theories and models of new programming
paradigms (functional and logic programming)

7.2 Specific objective of the
discipline

Get accustomed with a programming language for each of these paradigms (Common
Lisp and SWI Prolog)
Acquire the idea of using these programming paradigms based on the applications
necessities
Assure the necessary base for approaching certain advanced courses
Ability to apply declarative programming techniques to different real life problems
Ability to model phenomena using declarative techniques
Improved programming abilities using the declarative paradigm

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to
the other option will be deleted, and the kept one will be numbered 6.

8. Content
8.1 Course Teaching methods Remarks
Basic elements of Prolog. Facts and rules in
Prolog. Goals. The control strategy in Prolog.
Variables and composed propositions.
Anonymous variables. Rules for matching. The
flow model. Sections of a Prolog program.
Examples

Exposure: description, explanation,
examples, discussion of case
studies

The Prolog program. Predefined domains.
Internal and external goals. Multiple arity
predicates. The IF symbol (Prolog) and the IF
instruction (other languages). Compiler
directives. Arithmetic expressions and
comparisons. Input/output operations. Strings

Exposure: description, explanation,
examples, discussion of case
studies

Backtracking. The backtracking control. The
"fail" and "!"(cut) predicates. Using the "!"
predicate. Type of cuts. The "not" predicate.
Lists in Prolog. Recursion. Examples for
backtracking in Prolog. Finding all solutions in
the same time. Examples of predicates in Prolog.
Non-deterministic predicates

Exposure: description, explanation,
examples, discussion of case
studies

Composed objects and functors. Unifying
composed objects. Arguments of multiple types;
heterogeneous lists. Comparisons for composed
objects. Backtracking with cycles. Examples of
recursive procedures. The stack frame.
Optimization using the "tail recursion". Using
the "cut" predicate in order to keep the "tail
recursion".

Exposure: description, explanation,
examples, discussion of case
studies

Recursive data structures. Trees as data
structures. Creating and traversing a tree.
Search trees. The internal database of Prolog.
The "database" section. Declaration of the
internal database. Predicates concerning
operations with the internal database.

Exposure: description, explanation,
examples, discussion of case
studies

Advanced issues of Backtracking in Prolog. Files
management in Prolog.

Exposure: description, explanation,
examples, proofs, debate, dialogue

Programming and programming languages.
Imperative programming vs. declarative
programming. Introduction. The importance of
the functional programming as a new
programming methodology. History and
presentation of LISP

Exposure: description, explanation,
examples, discussion of case
studies

Basic elements in Lisp. Dynamic data structures.
Syntactic and semantic rules. Functions'
classification in Lisp. Primitive functions in Lisp.
Basic predicates in Lisp.

Exposure: description, explanation,
examples, discussion of case
studies

Predicates for lists; for numbers. Logic and
arithmetic functions. Defining user functions.
The conditional form. The collecting variable
method. Examples

Exposure: description, explanation,
examples, discussion of case
studies

Symbols' managing. Other functions for lists'
accessing. OBLIST and ALIST. Destructive
functions. Comparisons. Other interesting
functions. Examples

Exposure: description, explanation,
examples, discussion of case
studies

Definitional mechanisms. The EVAL form.
Functional forms; the functions FUNCALL and
APPLY. LAMBDA expressions, LABEL expressions.
Generators, functional arguments. MAP
functions. Iterative forms. Examples

Exposure: description, explanation,
examples, discussion of case
studies

Other elements in Lisp. Data structures. Macro- Exposure: description, explanation,

definitions. Optional arguments. Examples examples, discussion of case
studies

13.-14. Graded paper in Logic and Functional
Programming

Written test

Basic elements of Prolog. Facts and rules in
Prolog. Goals. The control strategy in Prolog.
Variables and composed propositions.
Anonymous variables. Rules for matching. The
flow model. Sections of a Prolog program.
Examples

Exposure: description, explanation,
examples, discussion of case
studies

Bibliography
1. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in Inteligenta Artificiala, Editura
Albastra, Cluj-Napoca, 2012
2. POP H.F., SERBAN G., Programare in Inteligenta Artificiala - Lisp si Prolog, Editura Albastra, ClujNapoca, 2003
3. http://www.ifcomputer.com/PrologCourse, Lecture on Prolog
4. http://www.lpa.co.uk, Logic Programming
5. FIELD A., Functional Programming, Addison Wesley, New York, 1988.
6. WINSTON P.H., Lisp, Addison Wesley, New York, 2nd edition, 1984.
8.2 Seminar / laboratory Teaching methods Remarks
S1. Recursion Explanation; Conversation;

Modelling; Case studies
S2. Lists in Prolog Explanation; Conversation;

Modelling; Case studies
S3. Processing of heterogeneous lists in Prolog Explanation; Conversation;

Modelling; Case studies
S4. Backtracking in Prolog Explanation; Conversation;

Modelling; Case studies
S5. Lists processing in LISP Explanation; Conversation;

Modelling; Case studies
S6. MAP functions in LISP Explanation; Conversation;

Modelling; Case studies
S7. Recap Explanation; Conversation;

Modelling; Case studies
Bibliography
1. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in Inteligenta Artificiala, Editura
Albastra, Cluj-Napoca, 2012
2. POP H.F., SERBAN G., Programare in Inteligenta Artificiala - Lisp si Prolog, Editura Albastra, ClujNapoca, 2003
3. Product documentation: Gold Common Lisp 1.01 si 4.30, XLisp, Free Lisp, CLisp.
4. Product documentation: Turbo Prolog 2.0, Logic Explorer, Sicstus Prolog, SWI Prolog.
8.3 Laboratory Teaching methods Remarks
Lab 1: Recursive algorithms in Pseudocode Explanation, dialogue, testing data

discussion, case studies
Problem given at lab 1 and
submitted at lab 1

Lab 2: Lists in Prolog Explanation, dialogue, testing data
discussion, case studies

Problem given at lab 1 and
submitted at lab 2

Lab 3: Trees in Prolog. Lists management in
Prolog.

Explanation, dialogue, testing data
discussion, case studies

Problem given at lab 2 and
submitted at lab 3

Lab 4: Backtracking in Prolog Explanation, dialogue, testing data
discussion, case studies

Problem given at lab 3 and
submitted at lab 4

Lab 4: Practical test in Prolog Practical test One hour
Lab 5: Recursive programming in Lisp Explanation, dialogue, testing data

discussion, case studies
Problem given at lab 4 and
submitted at lab 5

Lab 6: Recursive programming in Lisp Explanation, dialogue, testing data
discussion, case studies

Problem given at lab 5 and
submitted at lab 6

Lab 7: Using MAP functions in Lisp. Explanation, dialogue, testing data
discussion, case studies

Problem given at lab 6 and
submitted at lab 7

Lab 7: Practical test in Lisp Practical test One hour
Bibliography
1. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in Inteligenta Artificiala, Editura
Albastra, Cluj-Napoca, 2012
2. POP H.F., SERBAN G., Programare in Inteligenta Artificiala - Lisp si Prolog, Editura Albastra, ClujNapoca, 2003

3. Product documentation: Gold Common Lisp 1.01 si 4.30, XLisp, Free Lisp, CLisp.
4. Product documentation: Turbo Prolog 2.0, Logic Explorer, Sicstus Prolog, SWI Prolog.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;

The course exists in the studying program of all major universities in Romania and abroad;

The content of the course ensures the fundamental knowledge necessary for logical and functional programming at
employers;

The content of the course is concordant with partial competencies for possible occupations from the Grid 1 - RNCIS.

10. Evaluation
Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

- know the basic principle of
the domain;
- apply the course concepts
- problem solving

Written test in Logic and
Functional Programming
(during weeks 13 and 14)

60%

10.5 Seminar/laboratory

- activity at seminaries Evaluation of seminaries
activity BONUS 5%

- be able to implement
course concepts and
algorithms
- apply techniques for
different classes of
programming languages

Programs documentation
and delivery
Practical test in Prolog (one
hour at lab 4)
Practical test in Lisp (one
hour at lab 7)

10%

15%

15%

10.6 Minimum standard of performance

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the subject, that (s)he
is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to
use the knowledge in solving different problems.

In order to pass the course, the following minimal criteria apply collectively: at least grade 5 (from a scale of 1 to 10) at the
written test; at least grade 5 (from a scale of 1 to 10) computed as final grade average, attendance of at least 5 seminars
and at least 6 labs as scheduled during the semester. The semester activity cannot be redone in the sessions. All
requirements for the resit exam are identical to the above

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the
discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no
label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

Date:
10/04/2025

Signature of course coordinator

Prof. dr. Horia F. Pop

Signature of seminar coordinator

Prof. dr. Horia F. Pop

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

	1.1. Higher education institution
	Babeș-Bolyai University
	1.2. Faculty

	Mathematics and Computer Science
	1.3. Department
	Computer Science
	Computer Science
	Bachelor
	1.6. Study programme/Qualification

	Computer Science
	1.7. Form of education

	Full time studies
	3.1. Hours per week
	3.4. Total hours in the curriculum
	28
	Time allotment for individual study (ID) and self-study activities (SA)
	hours
	22
	Additional documentation (in libraries, on electronic platforms, field documentation)
	18
	Preparation for seminars/labs, homework, papers, portfolios and essays
	27
	Tutorship
	11
	Evaluations
	16
	Other activities:
	3.7. Total individual study hours
	94
	3.8. Total hours per semester
	150
	3.9. Number of ECTS credits
	6

