SYLLABUS

Data Structures and algorithms

University year 2025- 2026

1. Information regarding the programme

1.1. Higher education institution	Babeş – Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Computer Science (in English)
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	cipli	ne Data Stru	Data Structures and algorithms					Discipline code	MLE5022
2.2. Course coordinator				Le	ct. PhI). Oneţ-M	larian Zsuzsanna		
2.3. Seminar coordinator				Le	ct. PhI). Oneț-M	larian Zsuzsanna		
2.4. Year of study	1	2.5. Semester	ter 2 2.6. Type of evaluat			Е	2.7. Dis	cipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1S + 1LP
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)				hours	
Learning using manual, course support,	bibliogra	aphy, course notes (SA)			17
Additional documentation (in libraries, on electronic platforms, field documentation)				6	
Preparation for seminars/labs, homework, papers, portfolios and essays				30	
Tutorship				6	
Evaluations				10	
Other activities:					
3.7. Total individual study hours				59	
3.8. Total hours per semester	125				
3.9. Number of ECTS credits	Number of ECTS credits 5				

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of programming
4.2. competencies	Medium programming skills

5. Conditions (if necessary)

5.1. for the course	Class room with projector				
5.2. for the seminar /lab activities					

6.1. Specific competencies acquired

Professional/essential competencies	 development and maintenance of software systems use of theoretical foundations of computer science as well as of formal models
Transversal competencies	 application of organized and efficient work rules, of responsible attitudes towards the didactic-scientific field, to bring creative value to own potential, with respect for professional ethics principles and norms use of efficient methods and techniques to learn, inform, research and develop the abilities to bring value to knowledge, to adapt at the requirements of a dynamical society and to communicate efficiently in Romanian language and in an international language

6.2. Learning outcomes

г

Knowledge	 The student knows: The graduate has the necessary knowledge for using computers, developing software programs and applications, information processing.
Skills	 The student is able to: The graduate is able to identify complex problems and examine related issues to develop solving options and implement solutions. The graduate is able to combine diverse information to formulate solutions and generate ideas for developing new products and applications.
Responsibility and autonomy:	 The student has the ability to work independently to obtain: The graduate has the ability to apply general rules to specific problems and produce relevant solutions.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures (arrays, linked lists, heaps, hash tables, binary trees) that can be used to implement abstract data types
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content

01	Course	Teaching n	aathada	Remarks
		Teaching h	lietilous	Kelliarks
1.	Introduction. Data structures. Abstract			
	Data Types.		posure	
	Abstract Data Types and Data		escription	
	Structures		amples	
	Pseudocode conventions	• Di	dactical demonstration	
	Complexities			
2.	Arrays. Iterators		posure	
	Dynamic array	• De	escription	
	Amortized complexity analysis	• Co	onversation	
	Interface of an iterator	• Di	dactical demonstration	
3.	Abstract Data Types			
	• ADT Set: description, domain, interface			
	and possible representations			
	• ADT Map: description, domain,		posure	
	interface and possible representations		escription	
	• ADT Matrix: description, domain,		onversation	
	interface and possible representations	• Di	dactical demonstration	
	• ADT MultiMap: description, domain,			
	interface and possible representations			
4.	Abstract Data Types II			
	ADT Stack: description, domain,			
	interface and possible representations			
	 ADT Queue: description, domain, 			
	interface and possible representations	• Fv	posure	
	 ADT PriorityQueue: description, 		escription	
	domain, interface and possible		onversation	
	representations		dactical demonstration	
	 ADT Deque: description, domain, 	• DI	dactical demonstration	
	• ADT Deque: description, domain, interface and possible representations			
	ADT List : description, domain, interface and nearible representations			
-	interface and possible representations Linked Lists			
5.		• Ex	posure	
	• Singly linked list: representation and		escription	
	operations		onversation	
	• Doubly linked list: representation and	• Di	dactical demonstration	
	operations		se study	
	Iterator for linked lists			
6.	Linked Lists II			
	• Sorted linked lists: representation and	● Ex	posure	
	operations		escription	
	• Circular linked lists: representation and		onversation	
	operations		dactical demonstration	
	 Linked lists on arrays: representation 			
	and operations			
7.	Binary Heap		posure	
	Representations, specific operations.		escription	
	• HeapSort	• Co	onversation	
		• Di	dactical demonstration	
8.	Hash Table	с Г		
	Direct address tables		posure	
	• Hash tables: description, properties		escription	
	Collision resolution through separate		onversation	
	chaining	• Di	dactical demonstration	
9.	Hash Table II	• Ex	posure	
		- 17	Pobulo	

Collision resolution through coalesced	Description	
chaining	Conversation	
 Collision resolution through open 	Didactical demonstration	
addressing		
10. Hash Table III	Exposure	
 Perfect hashing 	Description	
 Linked hash tables 	Conversation	
 Containers represented over hash 	 Didactical demonstration 	
tables	Didactical defilolistration	
11. Trees. Binary Trees		
 Concepts related to trees 		
 Applications of trees 		
 Description and properties of binary 	• Exposure	
trees	Exposure	
Domain and interface of ADT Binary	DescriptionConversation	
Tree		
Possible representations of ADT Binary	Didactical demonstration	
Tree		
Binary tree traversals: recursive/non-		
recursive algorithms		
12. Binary Search Trees		
Description, properties	- Evpequee	
Representation	Exposure	
Operations: recursive and non-	Description	
recursive algorithms	Conversation	
Containers represented over binary	Didactical demonstration	
search trees		
	Exposure	
13. Balanced Binary Search Trees	Description	
AVL Trees	Conversation	
	Didactical demonstration	
	Examples	
	Exposure	
14. Applications and data structure libraries	Description	
in different programming languages	Conversation	
	Didactical demonstration	
Bibliography	Bradeliear demonstration	
1. T. Cormen, C. Leiserson, R. Rivest, C. Stein	: Introduction to algorithms, Third Ed	lition, The MIT Press, 2009
2. S. Skiena: The algorithms design manual,		
3. N. Karumanchi: Data structures and algor		ations, 2016
4. M. A. Weiss: Data structures and algorithm		
5. R. Sedgewick: Algorithms, Addison-Wesle		
8.2 Laboratory	Teaching methods	Remarks
		Laboratory is structured as 2
		hour classes every second week.
		Laboratory problems assigned at
		a lab have to be presented in the
		next lab (exception is Lab1).
		Every assignment focuses on a
		given data structure. Students
		will receive a container (ADT)
		that has to be implemented using
		the given data structure.
Lab1. A1- Dynamic array	Exposure	
- Example of a solved lab assignment	Examples	To be presented at Lab 3
(Demo)	Conversation	_
	Exposure	Decision at the lack star lack of the star
Lab 2. Discussion about the Demo. Example of	Examples	During the lab students will get
an extra operation	Conversation	help with their first assignment.

		,
	Exposure	
Lab 3. A2 - Linked lists with dynamic allocation	Examples A1 has to be presented	
	Conversation	
	Exposure	
Lab 4. A3 - Linked lists on array	• Examples	
	Conversation	
	Exposure	
Lab 5. A4 - Hash table	• Examples	
	Conversation	
	Exposure	
Lab 6. A5 - Binary search tree	• Examples	
	Conversation	
	Exposure	
Lab 7. Presentation of problem from Lab 6	• Examples	
-	Conversation	

Bibliography

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009

2. S. Skiena: The algorithms design manual, Second edition, Springer, 2008

3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016

4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012

5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

3 Seminar	Teaching methods	Remarks
		Seminar is structured as 2 hour classes every second week.
1. ADT Bag with generic elements. Representations and implementation on an array. Iterator for ADT Bag	 Exposure Conversation Examples Debate 	
2. Complexities	 Exposure Conversation Examples Debate 	
3. Bucket sort, Lexicographic sort, radix sort. Merging two sorted singly linked lists.	 Exposure Conversation Examples Debate 	
 Sorted MultiMap – representation and implementation on a singly linked list 	 Exposure Conversation Examples Debate 	
5. Evaluating an arithmetic expression. Problems solved with binary heap.	 Exposure Conversation Examples Debate 	
6. Hash tables	 Exposure Conversation Examples Debate 	
7. Binary trees.	 Exposure Conversation Examples Debate 	

Bibliography

1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009

2. S. Skiena: The algorithms design manual, Second edition, Springer, 2008

- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the concepts 	Written evalution (in the exam session): written exam	70%
10.5 Laborator	 C++ implementation of the concepts and algorithms presented at the lectures Lab assignment documentation Respecting the deadlines for lab presentation 	Correctness of the implementation and documentation (representation, specifications, algorithms, complexities).	30%
10.6 Seminar	Seminar activity	Active participation at the discussions during the seminar (asking and answering questions, volunteering to solve problems, etc.)	Maximum 0.5 points bonus, added to the final grade

• Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.

• For participating at the written exam, a student must have at least 6 lab attendances and 5 seminar attendances.

• For successfully passing the examination, a student must have at least 5 for the written exam, and minimum 5 as a final grade.

11. Labels ODD (Sustainable Development Goals)¹

Not applicable.

Date: 15.04.2025

Lect. PhD. Zsuzsanna ONEȚ-MARIAN

Signature of course coordinator

Signature of seminar coordinator Lect. PhD. Zsuzsanna ONEŢ-MARIAN

Date of approval:

...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

¹ Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.