SYLLABUS

Geometry

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeș-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Computer Science
1.5. Study cycle	Bachelor
1.6. Study programme/Qualification	Computer Science
1.7. Form of education	Full-time

2. Information regarding the discipline

2.1. Name of the disc	iplin	e Geometr	y		Discipline code	MLE0014	
2.2. Course coordinator			Lect.	dr. Iulian Simion			
2.3. Seminar coordinator			Lect.	dr. Iulian Simion			
2.4. Year of study	1	2.5. Semester	2	2.6. Type of evaluation	2.7. Discipline regime	Compulsory	

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laborator	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, b	oibliograph	y, course notes (SA)			20
Additional documentation (in libraries, o	n electroni	c platforms, field docume	ntation)		10
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					14
Evaluations					11
Other activities:					
3.7. Total individual study hours 69					
3.8. Total hours per semester	125				
3.9. Number of ECTS credits	5				

4. Prerequisites (if necessary)

4.1. curriculum	A first course in linear algebra and analysis respectively.
4.2. competencies	Competencies of using the above mentioned courses.

5. Conditions (if necessary)

5.1. for the course	blackboard and chalk or whiteboard and whiteboard marker, video projector
5.2. for the seminar /lab activities	blackboard and chalk or whiteboard and whiteboard marker

6.1. Specific competencies acquired ¹

Professional/essential competencies	 C1.1 Identifying specific concepts, describing specific theories and using domain specific language. C2.3 Applying suitable analytical methods to specific problems and contexts.
Transversal competencies	• CT1. Applying the principles of rigorous and efficient work while demonstrating a responsible attitude toward science and education, in compliance with ethical and professional standards.

6.2. Learning outcomes

Knowledge	The student knows: - The specific language, methods, and algorithms required to solve specific problems. - How to derive mathematical proofs for specific statements and formulas.
Skills	The student is able to: - Apply appropriate methods and algorithms to solve specific problems. - Derive mathematical proofs for specific statements and formulas.
Responsibility and autonomy:	The student is capable of working independently to: - Expand acquired knowledge. - Critically engage with the relevant literature.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	•	Basic concepts, methods, and algorithms in the context of analytic geometry.
7.2 Specific objective of the discipline		Interfacing with linear algebra and analysis through affine subspaces, classification of isometries, different perspectives on curves and surfaces, tangent planes and tangent lines, classification of quadrics, and curvature.

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

8.1 Course	Teaching methods	Remarks
Weeks 1-2. Affine Space	0	
Geometric vectors		
Vector space structure		
Cartesian coordinate frames	Exposition, proofs, examples	Two lectures
Changing coordinate frames		
Orientation		
Affine subspaces in dimension 2 and 3		
Weeks 3-4. Euclidean Space		
Scalar product		
Orthonormal frames		
• Gram-Schmidt process	Exposition, proofs, examples	Two lectures
Normal vectors		
• Angles		
• Loci of equidistant points		
Week 5. Area and Volume		
Cross product		
• Box product	Exposition, proofs, examples	
Common perpendicular		
Week 6. Affine Maps		
Parallel projections and reflections	Exposition, proofs, examples	
Orthogonal projections and reflections		
Week 7. Isometries		
Rotations in dimension 2 and 3		
Displacements	Exposition, proofs, examples	
Classification of isometries		
Week 8. Curves and Surfaces		
Equations and parametrizations		
Tangent lines	Exposition, proofs, examples	
Arc length		
Week 9. Quadratic Curves		
• Ellipse, hyperbola, parabola		
Canonical equations	Exposition, proofs, examples	
Relative position of a line		
Week 10. Classification of Quadrics		
Reduction to canonical form		
Isometric classification of quadrics	Exposition, proofs, examples	
Affine classification of quadrics		
Weeks 11-12. Quadratic surfaces		
• Ellipsoid, Cone, Hyperboloid, Paraboloid		
Canonical equation	Exposition, proofs, examples	Two lectures
Tangent planes		
Week 13. Curvatures		
Curvature of curves	Exposition, proofs, examples	
Curvatures of surfaces	1, F, enampies	
Week 14. Quaternions		
Algebraic description	Exposition, proofs, examples	
Quaternions and rotations	-r, prosis, shampios	
Quatermono una rotationo		
ר 1 וי א ו		
Bibliography		
[1] I. Simion, Geometry – course material, 2025.		
[2] P.A. Blaga, Geometrie liniară, Cluj-Napoca, 2022[3] M. Troyanov, Cours de géométrie, Lausanne, 202		
[0] 14. 110yanov, cours ac geometrie, Lausaille, 20	211.	
8.2 Seminar / laboratory	Teaching methods	Remarks
Weeks 1-2. Affine Space	Dialog, problem solving	
Geometric vectors		

Vector coo et musture		
Vector space structure		
Cartesian coordinate frames		
Changing coordinate frames		
• Orientation		
Affine subspaces in dimension 2 and 3		
Weeks 3-4. Euclidean Space		
• Scalar product		
 Orthonormal frames 		
 Gram-Schmidt process 	Dialog, problem solving	
 Normal vectors 		
• Angles		
 Loci of equidistant points 		
Week 5. Area and Volume		
Cross product	Dislog problem soluting	
• Box product	Dialog, problem solving	
• Common perpendicular		
Week 6. Affine Maps		
Parallel projections and reflections	Dialog, problem solving	
 Orthogonal projections and reflections 	0.1 0	
Week 7. Isometries		
Rotations in dimension 2 and 3		
• Displacements	Dialog, problem solving	
Classification of isometries		
Week 8. Curves and Surfaces		
Equations and parametrizations		
Tangent lines	Dialog, problem solving	
Arc length		
Week 9. Quadratic Curves		
Ellipse, hyperbola, parabola	Dialog, problem solving	
Canonical equations		
Relative position of a line		
Week 10. Classification of Quadrics		
Reduction to canonical form	Dialog, problem solving	
Isometric classification of quadrics	0,1 0	
Affine classification of quadrics		
Weeks 11-12. Quadratic surfaces		
 Ellipsoid, Cone, Hyperboloid, Paraboloid 	Dialog, problem solving	
 Canonical equation 	Dialog, prosieni solving	
• Tangent planes		
Week 13. Curvatures		
Curvature of curves	Dialog, problem solving	
 Curvatures of surfaces 		
Week 14. Quaternions		
Algebraic description	Dialog, problem solving	
Quaternions and rotations		
Dibligger		
Bibliography		
[1] I. Simion, Geometry – course material, 2025.		
[2] P.A. Blaga, Geometrie liniară, Cluj-Napoca, 2022		
[3] M. Troyanov, Cours de géométrie, Lausanne, 20	Ш.	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• A solid understanding of geometry is a prerequisite for any job involving geometric modeling.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade			
10.4 Course	Critical grasp of the learned material, ability to use what was learned	Two written partial exams at the middle and at the end of the semester	40% and 60% respectively			
10.5 Seminar/laboratory	Ability to use the theory for solving problemsPoints during the tuto for active participation		Can lead up to one extra point for the final grade			
10.6 Minimum standard of J	performance					
• 75% attendance at the Seminar.						
• At least grade 5 for the final grade (excluding the bonus points obtained during the tutorials).						

11. Labels ODD (Sustainable Development Goals)²

	General label	General label for Sustainable Development							
								9 NOUSTRY INNOVATION AND NEASTRUCTURE	

Date: 11.04.2025 Signature of course coordinator

Lect. dr. Iulian Simion

Signature of seminar coordinator

Lect. dr. Iulian Simion

Date of approval: 25.04.2025

Signature of the head of department

Prof. dr. Andrei Mărcuș

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.