
SYLLABUS	

Computer	systems	architecture	/	Arhitectura	sistemelor	de	calcul	

University	year	2025-2026	

	

1.	Information	regarding	the	programme	
1.1.	Higher	education	institution	 Babeș-Bolyai	University	
1.2.	Faculty	 Mathematics	and	Computer	Science	
1.3.	Department	 Computer	Science	
1.4.	Field	of	study	 Computer	Science	
1.5.	Study	cycle	 Bachelor	
1.6.	Study	programme/Qualification	 Computer	Science	
1.7.	Form	of	education	 		Full	time	

	
2.	Information	regarding	the	discipline	

2.1.	Name	of	the	discipline	 Computer	systems	architecture	(Arhitectura	
sistemelor	de	calcul)	 Discipline	code	 MLRE004	

2.2.	Course	coordinator	 Assoc.prof.phd.	Mihai	SUCIU	
2.3.	Seminar	coordinator	 Assoc.prof.phd.	Mihai	SUCIU	
2.4.	Year	of	study	 1	 2.5.	Semester	 1	 2.6.	Type	of	evaluation	 E	 2.7.	Discipline	regime	 Mandatory	

	
3.	Total	estimated	time	(hours/semester	of	didactic	activities)	

	
4.	Prerequisites	(if	necessary)	
4.1.	curriculum	 -	
4.2.	competencies	 -	
	
5.	Conditions	(if	necessary)	
5.1.	for	the	course	 course	room	with	video	projector	and	whiteboard	
5.2.	for	the	seminar	/lab	activities	 course	room	with	video	projector	and	whiteboard	and	workstations	
	
	
	
	

3.1.		Hours	per	week			 5	 of	which:	3.2	course	 2	 3.3	
seminar/laboratory/project	 1/2/0	

3.4.		Total	hours	in	the	curriculum	 70	 of	which:	3.5	course			 28	 3.6		
seminar/laboratory/project	 42	

Time	allotment	for	individual	study	(ID)	and	self-study	activities	(SA)	 hours	
Learning	using	manual,	course	support,	bibliography,	course	notes	(SA)	 20	
Additional	documentation	(in	libraries,	on	electronic	platforms,	Zield	documentation)	 10	
Preparation	for	seminars/labs,	homework,	papers,	portfolios	and	essays			 20	
Tutorship		 10	
Evaluations	 20	
Other	activities:		 	
3.7.		Total	individual	study	hours	 80	
3.8.		Total	hours	per	semester	 150	
3.9.		Number	of	ECTS	credits	 6	



6.1.	SpeciRic	competencies	acquired	1	
Pr
of
es
si
on
al
/e
ss
en
ti
al
	

co
m
pe
te
nc
ie
s	

• development	and	maintenance	of	computer	applications	
• use	of	computer	tools	in	an	interdisciplinary	context	

Tr
an
sv
er
sa
l	

co
m
pe
te
nc
ie
s 	

• applying	rules	of	organized	and	efZicient	work,	of	responsible	attitudes	towards	the	didactic-scientiZic	
Zield,	for	the	creative	valorization	of	one's	own	potential,	while	respecting	the	principles	and	norms	of	
professional	ethics	

• efZiciently	carrying	out	activities	organized	in	an	interdisciplinary	group	and	developing	empathetic	
interpersonal	communication,	relationship	and	collaboration	capacities	with	diverse	groups	

	

	

	

	

6.2.	Learning	outcomes	

K
no
w
le
dg
e	

The	student	has	the	necessary	knowledge	to	use	computers,	develop	software	programs	and	applications,	
process	information.	The	graduate	has	knowledge	related	to	programming,	mathematics,	engineering	and	
technology	and	has	the	necessary	skills	to	use	them	in	creating	complex	computer	systems.	

Sk
ill
s	 The	student	can	apply	general	rules	to	speciZic	problems	and	produce	relevant	solutions.	The	graduate	can	

develop,	design	and	create	new	applications,	systems	or	products	using	good	practices	in	the	Zield.	

Re
sp
on
si
bi
lit
y 	

an
d	
au
to
no
m
y:
	

The	student	can	work	independently	to	identify	complex	problems	and	examine	related	issues	to	develop	
solution	options	and	implement	solutions.	The	graduate	is	able	to	combine	diverse	information	to	formulate	
solutions	and	generate	development	ideas	for	new	products	and	applications.	

	
	
	
	
	
	
	

 
1	One	can	choose	either	competences	or	learning	outcomes,	or	both.	If	only	one	option	is	chosen,	the	row	related	
to	the	other	option	will	be	deleted,	and	the	kept	one	will	be	numbered	6.	



	
	
	
	

7.	Objectives	of	the	discipline	(outcome	of	the	acquired	competencies)	

7.1	General	objective	of	the	
discipline	

• Knowledge	of	computer	architectural	models,	processor	operation,	use	of	
computer	information	representation	systems.	

7.2	SpeciRic	objective	of	the	
discipline	

• The	student	learns	about	computer	architectural	models,	processor	operation,	
and	the	use	of	computer	information	representation	systems.	

• Introduction	to	assembly	language	programming,	which	ensures	
understanding	of	the	architecture	and	functioning	of	a	microprocessor.	

• Understanding	the	impact	of	the	80x86	processor	architecture	on	the	
Windows	operating	system	and	its	limitations.	

• Awareness	of	the	architecture	-	operating	system	-	programming	languages	
triad	and	the	interactions	between	them	as	the	basic	core	of	computer	science.	

• Awareness	of	the	inZluence	that	the	basic	functional	principles	of	the	von	
Neumann	architecture	have	on	the	implementation	of	high-level	programming	
languages.	

• Awareness	of	the	architectural	impact	on	the	design	and	implementation	
techniques	of	high-level	programming	languages.	

	

	

	

8.	Content	
8.1	Course	 Teaching	methods	 Remarks	
1.	Data	representation:	Elementary	data	types,	
binary	representations	and	placement	orders,	
data	organization	and	storage.	

Exposition,	
conversation,	
debate,	
problematization,	
discovery	

	

2.	Character	encoding,	integer	encoding,	signed	
and	unsigned	convention,	sign	bit,	complement	
code,	arithmetic	operations,	concept	of	
overflow,	conversion	to	a	location	of	other	
dimensions.	

	

3.	CS	performance,	80x86	microprocessor	
architecture	–	structure,	registers,	address	
calculation,	addressing	modes,	FAR	and	NEAR	
addresses	

	

4.	Executive	unit	(EU)	of	80x86	
microprocessor.	 	

5.	BIU	unit	of	80x86	microprocessor	 	
6.	Assembly	language	elements.	 	
7.	Standard	directives	for	defining	segments.	 	
8.	Assembly	language	instructions.	 	
9.	Impact	of	little	endian	representation	on	
data	access.	 	

10.	Conditional	and	unconditional	jump	
instructions.	 	

11.	Representation	of	machine	instructions.	 	
12.	ASM-ASM	multimodule	programming:	 	
13.	Implementing	subprogram	calls.	 	
14.	Linking	NASM	modules	with	modules	
written	in	high-level	languages.	 	

Bibliography	



1.	Al.	Vancea,	F.	Boian,	D.	Bufnea,	A.	Andreica,	A.	Darabant,	A.	Navroschi	–	Arhitectura	calculatoarelor.	
Limbajul	de	asamblare	80x86.,	Editura	Risoprint,	Cluj-Napoca,	2014.	
2.	Al.	Vancea,	F.	Boian,	D.	Bufnea,	A.	Gog,	A.	Darabant,	A.	Sabau	–	Arhitectura	calculatoarelor.	Limbajul	
de	asamblare	80x86.,	Editura	Risoprint,	Cluj-Napoca,	2005.	
3.	A.	Gog,	A.	Sabau,	D.	Bufnea,	A.	Sterca,	A.	Darabant,	Al.	Vancea	–	Programarea	ı̂n	limbaj	de	asamblare	
80x86.	Exemple	si	aplicatii.,	Editura	Risoprint,	Cluj-Napoca,	2005.	
4.	Randal	Hyde	–	The	Art	of	Assembly	Programming,	No	Starch	Press,	2003.	
(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)	
5.	Boian	F.M.	Vancea	A.	Arhitectura	calculatoarelor,	suport	de	curs.	Facultatea	de	Matematica	si	
Informatica,	Centrul	de	Formare	Continua	si	Invatamânt	la	Distanta,.	Ed.	Centrului	de	Formare	Continua	si	
Invatamânt	la	Distanta,	Cluj,	2002	
6.	Irvine,	K.R.,	2015.	Assembly	language	for	x86	processors.	
7.	Kusswurm,	D.,	2014.	Modern	X86	Assembly	Language	Programming.	Springer.	
8.	Carter,	P.A.,	2004.	PC	Assembly	Language.	Github:	(http://pacman128.github.io/static/pcasm-book.pdf)	
9.	Cavanagh,	J.,	2013.	X86	Assembly	Language	and	C	Fundamentals.	CRC	Press.	
10.	Guide,	P.,	2011.	Intel®	64	and	ia-32	architectures	software	developer’s	manual.	Volume	3B:	System	
programming	Guide,	Part,	2,	p.11.	
(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf)	
11.	BitDefender	internal	documentations	–	materiale	postate	pe	pagina	cursului	
12.	Cursuri	si	materiale	suport	postate	pe	site-ul	cursului	
8.2	Seminar	/	laboratory	 Teaching	methods	 Remarks	
S1:	Introducere	ı̂n	limbajul	de	asamblare	IA-32.	 	 	
S2:	Obtaining	the	offset	/	value	of	a	variable.	 	 	
S3:	Comparison	instructions.	 	 	
S4:	String	instructions.	 	 	
S5:	Function	calls	and	text	Zile	operations.	 	 	
S6:	Multi-module	programming	using	assembly	
language.	 	 	

S7:	Exam	preparation:	discussions	and	case	
studies.	 	 	

L1:	Conversion	between	different	number	
bases.	 	 	

L2:	Simple	arithmetic	expressions.	 	 	
L3:	Complex	arithmetic	expressions.	 	 	
L4:	Bitwise	instructions.	 	 	
L5:	Simple	string	operations.	 	 	
L6:	Complex	string	operations.	 	 	
L7:	Function	calls.		 	 	
L8:	test	 	 	
L9:	Text	Zile	operations.	 	 	
L10:	Discussions,	analysis	and	evaluation	of	
laboratory	work.	Teaching	the	latest	
assignments.	

	 	

L11:	Multimodule	programming	(asm	+	asm).	 	 	
L12:	Multimodule	programming	(asm	+	C).	 	 	
L13:	Preparation	for	practical	exams:	
discussions	and	case	studies.	 	 	

L14:	test.	 	 	
Bibliography	
1.	Al.	Vancea,	F.	Boian,	D.	Bufnea,	A.	Andreica,	A.	Darabant,	A.	Navroschi	–	Arhitectura	calculatoarelor.	
Limbajul	de	asamblare	80x86.,	Editura	Risoprint,	Cluj-Napoca,	2014.	
2.	Al.	Vancea,	F.	Boian,	D.	Bufnea,	A.	Gog,	A.	Darabant,	A.	Sabau	–	Arhitectura	calculatoarelor.	Limbajul	
de	asamblare	80x86.,	Editura	Risoprint,	Cluj-Napoca,	2005.	
3.	A.	Gog,	A.	Sabau,	D.	Bufnea,	A.	Sterca,	A.	Darabant,	Al.	Vancea	–	Programarea	ı̂n	limbaj	de	asamblare	
80x86.	Exemple	si	aplicatii.,	Editura	Risoprint,	Cluj-Napoca,	2005.	
4.	Randal	Hyde	–	The	Art	of	Assembly	Programming,	No	Starch	Press,	2003.	
(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)	



5.	Boian	F.M.	Vancea	A.	Arhitectura	calculatoarelor,	suport	de	curs.	Facultatea	de	Matematica	si	
Informatica,	Centrul	de	Formare	Continua	si	Invatamânt	la	Distanta,.	Ed.	Centrului	de	Formare	Continua	si	
Invatamânt	la	Distanta,	Cluj,	2002	
6.	Irvine,	K.R.,	2015.	Assembly	language	for	x86	processors.	
7.	Kusswurm,	D.,	2014.	Modern	X86	Assembly	Language	Programming.	Springer.	
8.	Carter,	P.A.,	2004.	PC	Assembly	Language.	Github:	(http://pacman128.github.io/static/pcasm-book.pdf)	
9.	Cavanagh,	J.,	2013.	X86	Assembly	Language	and	C	Fundamentals.	CRC	Press.	
10.	Guide,	P.,	2011.	Intel®	64	and	ia-32	architectures	software	developer’s	manual.	Volume	3B:	System	
programming	Guide,	Part,	2,	p.11.	
(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf)	
11.	BitDefender	internal	documentations	–	materiale	postate	pe	pagina	cursului	
12.	Cursuri	si	materiale	suport	postate	pe	site-ul	cursului	

	

	

	

9.	Corroborating	the	content	of	the	discipline	with	the	expectations	of	the	epistemic	community,	professional	
associations	and	representative	employers	within	the	Rield	of	the	program	

• This	course	is	included	in	the	curriculum	of	all	major	universities	in	Romania	and	abroad.	
• This	course	provides	the	basic	knowledge	that	any	programmer	should	have.	

	

	

	

	

10.	Evaluation	
Activity	type	 10.1	Evaluation	criteria	 10.2	Evaluation	methods	 10.3	Percentage	of	Zinal	grade	

10.4	Course	

Knowledge	of	the	basic	
principles	of	the	Zield.	 written	exam	 60	Understanding	assembly	
language	concepts.	

10.5	Seminar/laboratory	

Problem	solving	by	
applying	32-bit	assembly	
language	programming	
principles.	

Average	grades	obtained	
on	laboratory	assignments.	 10%	

Develop	and	implement	
solutions	in	assembly	
language	for	a	given	
problem.	

Average	of	grades	for	
laboratory	tests.	 30%	

10.6	Minimum	standard	of	performance	

• 	Grade:	minimum	5	at	each	grading	activity.		

• Attendances:	75%	attendance	at	seminar	activities,	90%	attendance	at	laboratory	activities.	

• Students	with	more	than	2	unmotivated	absences	at	the	seminar/laboratory	activities	will	not	be	able	to	take	the	
exam	in	the	normal	session	and	or	in	the	retake	examination	session	(seminar	activities	are	activities	that	take	
place	on	the	following	principle	“activity	during	the	semester	”,	and	they	cannot	be	recovered	or	repeated	for	a	



possible	retake	examination	(these	students	will	have	to	repeat	this	course	in	the	next	academic	year)).	Students	
with	medical	certiZicates	for	each	of	their	absences	are	exempted	from	this	rule.	

	
	
	

	

	

11.	Labels	ODD	(Sustainable	Development	Goals)2	
	

Not	applicable.	

	

Date:	
	

Signature	of	course	coordinator	

Assoc.prof.phd.	Mihai	SUCIU	

Signature	of	seminar	coordinator	

Assoc.prof.phd.	Mihai	SUCIU	

	 	 	

Date	of	approval:	
	

	

Signature	of	the	head	of	department	

Assoc.prof.phd.	Adrian	STERCA	

	

	

	

 
2	Keep	only	the	labels	that,	according	to	the	Procedure	for	applying	ODD	labels	in	the	academic	process,	suit	the	
discipline	and	delete	the	others,	including	the	general	one	for	Sustainable	Development	–	if	not	applicable.	If	no	
label	describes	the	discipline,	delete	them	all	and	write	„Not	applicable.”.	

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

