SYLLABUS

Computational Intelligence applications in Software Engineering

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Applied Computational Intelligence
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	scipli	no -	Computational Intelligence applications in Software Engineering				Discipline code	MME8063
2.2. Course coordinator					Prof. PhD Czibula Istvan			
2.3. Seminar coordinator				Pr	of. PhI	Czibula Istvan		
2.4. Year of study	2	2.5. Semester	Semester 3 2.6. Type of evaluati			Е	2.7. Discipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 sem+ 1 pr
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					26
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					12
Evaluations					10
Other activities:					
3.7. Total individual study hours 119					
3.8. Total hours per semester	r 175				
3.9. Number of ECTS credits	3.9. Number of ECTS credits 7				

4. Prerequisites (if necessary)

4.1. curriculum	Artificial Intelligence
4.2. competencies	Programming skills

5. Conditions (if necessary)

5.1. for the course	Classroom with a projector		
5.2. for the seminar /lab activities	Laboratory with computers; high level programming language environment (.NET		
5.2. for the seminar / lab activities	or any Java environement a.s.o.)		

6.1. Specific competencies acquired ¹

Professional/essential competencies	 assimilation of mathematical concepts and formal mode/s to understand, verify and validate software systems; ability to approach and solve complex problems using various techniques of computational intelligence.
Transversal competencies	 capability of information analysis and synthesis; etic and fair behaviour, commitment to professional deontology; team work capabilities; able to fulfil different roles.

6.2. Learning outcomes

U.Z. LCal	ining outcomes
e	The student knows: • the ethical and legal principles and rules in scientific research;
Knowledge	 methods for modelling, being able to analyse real life problems and to translate them in concrete requirements and to design a corresponding software model;
Kno	 knowledge related to specifying the requirements of research activities in the domain of computer science in general and computational intelligence in particular and he/she understands the role of research in promoting progress.
Skills	 The student is able to: use specific language and terminology for the field of computational intelligence being able to communicate and interact with members of a team; advanced computational intelligence knowledge starting from a high level of abstraction and being able to offer implementation solutions for complex software system.
Responsibility and autonomy:	 The student has the ability to work independently to: obtain knowledge necessary for designing, managing and evaluating research activities in the field of computational intelligence; devise, model and design of complex software applications in the field of computational intelligence.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To present the field of Search Based Software Engineering as a new research and application domain of software engineering.			
7.2 Specific objective of the discipline	 To introduce the student a new field of Software Engineering- Search Based Software Engineering. To induce the necessity and importance of using computational intelligence techniques for solving software engineering problems. To present some important activities within software engineering and how are they solved using computational intelligence techniques. 			

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction Search Based Software Engineering Main concepts and approached problems 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Machine learning in Software Engineering Machine learning techniques Applications CI techniques for Program Comprehension 	 Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure Explanation 	
4. CI techniques for Refactoring	 Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration 	
5. CI techniques for Defect Detection and prediction	 Interactive exposure Explanation Conversation Didactical demonstration 	
6. CI techniques for Software Testing	 Interactive exposure Explanation Conversation Didactical demonstration 	
7. CI techniques for Software Vizualization	 Interactive exposure Explanation Conversation Didactical demonstration 	
8. CI techniques for Effort prediction and Cost estimation	 Interactive exposure Explanation Conversation Didactical demonstration 	
9. CI techniques for Software Reuse	 Interactive exposure Explanation Conversation Didactical demonstration 	
10. CI techniques for Design Patterns identification	 Interactive exposure Explanation Conversation Didactical demonstration 	
CISE research reports presentation	Interactive exposureConversationOral assessment	

Bibliography

- 1. Czibula, I., G., Use of search techniques to software development, Editura Risoprint, ISBN 978-973-53-0119-4, 2009 (248 pagini)
- 2. Mark Harman and Bryan F. Jones. Search-based software engineering. Information & Software Technology, 43(14):833-839, 2001.
- 3. Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of refactorings for improving the class structure of object-oriented systems. In GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 1909{1916, New York, NY, USA, 2006. ACM Press.
- 4. Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In CSMR '01: Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, pages 30-38, Washington, DC, USA, 2001. IEEE

Computer Society.	m 11 1	D 1
8.2 Seminar / laboratory	Teaching methods	Remarks
		The activity is structured as 2 hours classes every
Administration of seminars. Survey of the sources of information available on Internet and Intranet Survey of the sources of information available on Internet and Intranet; chosing the	 Interactive exposure Explanation Conversation Documentation 	
paper topic and scheduling the presentation.	 Explanation Conversation	
A software project on a SBSE topic (Project 1) will be developed using an open source ML development environment. The second project (Project 2) will be realized from scratch and documented. The software will have to demonstrate the use of CI techniques for some specific SE task.		
3. Problem definition and specification for Project 2	Lab assignmentExplanationConversation	
4. Comments about the solution (problem analysis) and search based modeling of the problem (Project 2). Demonstration of Project 1	Lab assignmentExplanationConversation	
5. Design documentation for Project 2	Lab assignmentExplanationConversation	
6. The electronic version of the source code, test files and any other files required to test Project 2. Project 2 demonstration	Lab assignmentExplanationConversation	

Bibliography

- 1. Czibula, I., G., Use of search techniques to software development, Editura Risoprint, ISBN 978-973-53-0119-4, 2009 (248 pagini)
- 2. Mark Harman and Bryan F. Jones. Search-based software engineering. Information & Software Technology, 43(14):833-839, 2001.
- 3. Olaf Seng, Johannes Stammel, and David Burkhart. Search-based determination of refactorings for improving the class structure of object-oriented systems. In GECCO '06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 1909{1916, New York, NY, USA, 2006. ACM Press.
- 4. Frank Simon, Frank Steinbruckner, and Claus Lewerentz. Metrics based refactoring. In CSMR '01: Proceedings of the Fifth European Conference on Software Maintenance and Reengineering, pages 30-38, Washington, DC, USA, 2001. IEEE Computer Society.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the software engineering field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	A theoretical research report on a SBSE topic, based on some recent research papers should be	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	20%

	prepared and presented		
	The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	40%
	Class attendance	4 unmotivated absences are accepted, but each unmotivated absence other than those specified above are penalised	10%
	A software project developed using an open source ML software	Evaluation of the project (documentation and demonstration)	15%
10.5 Seminar/laboratory	A software project on a SBSE topic will be fully implemented, without using existing libraries.	Evaluation of the project (software implementation, documentation and demonstration)	15%

10.6 Minimum standard of performance

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the SBSE field, that (s)he is capable of stating this knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: Signature of course coordinator Signature of seminar coordinator

10.04.2025 Prof. PhD Czibula Istvan Prof. PhD Czibula Istvan

Date of approval: Signature of the head of department

Assoc. prof. PhD. Adrian STERCA

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.