

SYLLABUS

Programming Paradigms

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution Babeş Bolyai University

1.2. Faculty Faculty of Mathematics and Computer Science

1.3. Department Department of Computer Science

1.4. Field of study Computer Science

1.5. Study cycle Master

1.6. Study programme/Qualification Software Engineering

1.7. Form of education Full time

2. Information regarding the discipline

2.1. Name of the discipline Programming Paradigms Discipline code MME8028

2.2. Course coordinator Assoc.Prof.Eng. Florin Craciun

2.3. Seminar coordinator Assoc.Prof.Eng. Florin Craciun

2.4. Year of study 1 2.5. Semester 1 2.6. Type of evaluation E 2.7. Discipline regime Compulsory

3. Total estimated time (hours/semester of didactic activities)

4. Prerequisites (if necessary)

4.1. curriculum

• Fundamentals of Programming

• Object-Oriented Programming

• Functional and Logic Programming

4.2. competencies Average software development skills

5. Conditions (if necessary)

5.1. for the course projector

5.2. for the seminar /lab activities projector

3.1. Hours per week 4 of which: 3.2 course 2
3.3
seminar/laboratory/project

2

3.4. Total hours in the curriculum 56 of which: 3.5 course 28
3.6
seminar/laboratory/project

28

Time allotment for individual study (ID) and self-study activities (SA) hours

Learning using manual, course support, bibliography, course notes (SA) 28

Additional documentation (in libraries, on electronic platforms, field documentation) 28

Preparation for seminars/labs, homework, papers, portfolios and essays 35

Tutorship 14

Evaluations 14

Other activities:

3.7. Total individual study hours 119

3.8. Total hours per semester 175

3.9. Number of ECTS credits 7

6.1. Specific competencies acquired 1

P
ro

fe
ss

io
n

a
l/

e
ss

e
n

ti
a

l
co

m
p

e
te

n
ci

e
s

• understanding and working with basic concepts in software engineering;
• capability of analysis and synthesis;
• modeling and solving real-life problems;
• assimilation of mathematical concepts and formal models to understand, verify and validate software

systems;
• analysis, design, and implementation of software systems;
• proficient use of methodologies and tools specific to programming languages and software systems;

T
ra

n
sv

e
rs

a
l

co
m

p
e

te
n

ci
e

s

• team work capabilities; able to fulfill different roles;
• professional communication skills; concise and precise description, both oral and written, of

professional results , negociation abilities;

6.2. Learning outcomes

K
n

o
w

le
d

g
e

The student knows:
• The graduate has the necessary knowledge to devise, model and design of complex software

application
• The graduate knows the software processes and can integrate them in the organisational culture of a

software company
• The graduate possesses the fundamental knowledge for modelling, being able to analyse real life

problems and to translate them in concrete requirements and to design a corresponding software
model

S
k

il
ls

The student is able to
• The graduate proves advance programming skills which will allow to learn and comprehend modern

technologies
• The graduate can apply advanced information system knowledge starting from a high level of

abstraction and being able to offer implementation solutions for complex software system
• The graduate can use specific language and terminology for software engineering being able to

communicate and interact with members of a team

R
e

sp
o

n
si

b
il

it
y

a

n
d

 a
u

to
n

o
m

y
:

The student has the ability to work independently to obtain
• The graduate has the ability to combine information in different ways in order to form a positive

attitude towards his/her own development
• The graduate is able to carry on activities for education and training on different topics related to

software development
• The graduate is able to analyse concrete educational situation in terms of general ethical principles

and rules
• The graduate proves knowledge related to specifying the requirements of research activities in the

domain of computer science in general and software engineering in particular and he/she
understands the role of research in promoting progress

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the
discipline

• Know and understand fundamental concepts of programming.

• Be able to apply different programming paradigms to different
programming projects

1 One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related
to the other option will be deleted, and the kept one will be numbered 6.

7.2 Specific objective of the
discipline

• know the main features of different programming paradigms:

procedural, object-oriented, concurrent, functional, logical, event-

based, scripting

• have a good understanding of the following concepts: value, type,

variable, binding, procedural abstraction, data abstraction, object,

class, component, interface, polymorphism;

• learn the similarities and differences between different
programming paradigms in terms of the concepts they implement

8. Content

8.1 Course Teaching methods Remarks

1. Basic concepts

• Interactive exposure

• Explanation

• Conversation

• Didactical

demonstration

2. Oz syntax, data structures

3. Oz syntax, data structures

4. Statements, Kernel Language,
Abstract Machine

5. Higher-Order Programming

6. Lambda Calculus

7. Tupled Recursion and Exceptions

8. Types, ADT, Components

9. Declarative Concurrency

10. Declarative Concurrency

11. Declarative Concurrency

12. Stateful Programming

13. Relational Programming

14. Constraint Programming

Bibliography

1. SCOTT, MICHAEL L.: Programming Language Pragmatics, 4th ed, Morgan-Kaufmann, 2016

2. SEBESTA, ROBERT W.: Concepts of Programming Languages, 10th ed, Pearson Education, 2012

3. SZYPERSKI, CLEMENS: Component Software. Beyond Object-Oriented Programming, Addison

Wesley (1st ed. 1998, 2nd ed. 2002 with GRUNTZ, DOMINIK and MURER, STEFAN).

4. STROUSTRUP, BJARNE: The C++ Programming Language Special Edition, Addison-Wesley, 2000

chapter 2

5. VAN ROY, PETER; HARIDI, SEIF: Concepts, Techniques and Models of Computer Programming, MIT Press,

2004

6. WATT, David A.: Programming Language Design Concepts, Wiley, 2004

8.2 Seminar / laboratory Teaching methods Remarks

 Research papers allocation for
the oral presentation

Use practical tools to
implement group projects.
Discuss research papers.

Seminar is organized as a
total of 14 hours – 2 hours
every second week Project
is organized as a total of 14
hours – 2 hours every

 First programming assignment

 Research papers presentations

4. Second programming assignment

5. Research papers presentations.

7. Third programming assignment

8. Research papers presentations.

Bibliography

Research papers
 Mozart System

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional
associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Software

Engineering studies;

• The content of the course is considered by the software companies as important for average
software development skills

10. Evaluation

Activity type 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Percentage of final grade

10.4 Course

- know the basic

principle of the

domain;
- apply the course

concepts

problem solving

Final written exam

40%

10.5 Seminar/laboratory

- be able to apply

course concepts

be able to do a critical
evaluation of research
papers

-Paper presentation
and approx. 3
programming
assignments

60%

10.6 Minimum standard of performance

• At least grade 5 (from a scale of 1 to 10) at both final written exam and seminar work.

11. Labels ODD (Sustainable Development Goals)2

Not applicable.

Date:
...

Signature of course coordinator

Assoc.Prof.Eng. Florin Craciun

Signature of seminar coordinator

Assoc.Prof. Eng. Florin Craciun

Date of approval:
...

Signature of the head of department

Assoc.prof.phd. Adrian STERCA

2 Keep only the labels that, according to the Procedure for applying ODD labels in the academic process, suit the

discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no

label describes the discipline, delete them all and write „Not applicable.”.

https://green.ubbcluj.ro/procedura-de-aplicare-a-etichetelor-odd/

