SYLLABUS

Multiagent systems

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2. Faculty	Faculty of Mathematics and Computer Science
1.3. Department	Department of Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Applied Computational Intelligence
1.7. Form of education	Full time

2. Information regarding the discipline

2.1. Name of the dis	cipli	ne Multiage r	Multiagent systems Discipline code MME8152						
2.2. Course coordinator					Pr	of. PhI	O Czibula	Gabriela	
2.3. Seminar coordinator					Pr	of. PhI	O Czibula	Gabriela	
2.4. Year of study	1	2.5. Semester	Semester 2 2.6. Type of evaluat			Е	2.7. Dis	cipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	1 sem+ 1 pr
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					26
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					12
Evaluations					10
Other activities:					
3.7. Total individual study hours 119					
3.8. Total hours per semester	s per semester 175				
3.9. Number of ECTS credits	its 7				

4. Prerequisites (if necessary)

4.1. curriculum	Artificial Intelligence
4.2. competencies	Programming skills

5. Conditions (if necessary)

5.1. for the course	Classroom with a projector
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired ¹

Professional/essential competencies	 assimilation of mathematical concepts and formal mode/s to understand, verify and validate software systems; ability to approach and solve complex problems using various techniques of computational intelligence.
Transversal competencies	 capability of information analysis and synthesis; etic and fair behaviour, commitment to professional deontology; team work capabilities; able to fulfil different roles.

6.2. Learning outcomes

U.Z. LCai	ining outcomes
e	The student knows: • the ethical and legal principles and rules in scientific research;
Knowledge	 methods for modelling, being able to analyse real life problems and to translate them in concrete requirements and to design a corresponding software model;
Kno	 knowledge related to specifying the requirements of research activities in the domain of computer science in general and computational intelligence in particular and he/she understands the role of research in promoting progress.
Skills	 The student is able to: use specific language and terminology for the field of computational intelligence being able to communicate and interact with members of a team; advanced computational intelligence knowledge starting from a high level of abstraction and being able to offer implementation solutions for complex software system.
Responsibility and autonomy:	 The student has the ability to work independently to: obtain knowledge necessary for designing, managing and evaluating research activities in the field of computational intelligence; devise, model and design of complex software applications in the field of computational intelligence.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	To present the field of agents as a new research and application domain of Software
discipline	Engineering and Artificial Intelligence.

 $^{^{1}}$ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

7.2 Specific objective of the discipline

- To introduce the main concepts and methods related to agent oriented software engineering.
- To present the connection between agents and other programming paradigms.
- To present the connection between multiagent systems and the distributed artificial intelligence field.
- To induce the necessity of MAS through the study of relevant industrial and practical applications.

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction Agent based software engineering The concept of agent and intelligent agent Applications 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Agents and intelligent agents Definitions, properties, taxonomies Abstract and concrete architectures for intelligent agents Software agents Mobile agents, interface agents Application domains Agents and Objects Agents and Expert Systems Agent based development 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Agent based systems Design principles of an agent based system Conceptual modeling using agents Examples Agents in complex software systems Implementation of the agent function Examples 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 4. Multiagent systems and societies of agents Coordination, cooperation, communication - protocols Negotiation Communication languages between agents KQML, FIPA-ACL 	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Applications of agents and MASAgents in e-business and e-	Interactive exposureExplanationConversation	

commerce	•	Didactical demonstration	
 Agents in e-banking 			
 Agents for Distributed Data 			
Mining			
 Information agents 			
 Industrial applications of MAS 			
6. Distributed problem solving and			
planning	•	Interactive exposure	
 Agent based modeling 	•	Explanation Conversation	
 Advantages of using agents 	•	Didactical demonstration	
 Techniques for DPS and DP 			
7. Distributed constraint satisfaction			
problems			
 The problem definition 	•	Interactive exposure	
 The hyperresolution 	•	Explanation	
based consistency	•	Conversation Didactical demonstration	
algorithm	•	Didactical demonstration	
Asynchronous backtracking			
• Examples	 		
8. Distributed path finding problems			
Asynchronous dynamic .			
programming	•	Interactive exposure	
• Learning Real Time A*	•	Explanation Conversation	
Bidirectional search algorithm	•	Didactical demonstration	
Real time multiagent search			
algorithm			
• Examples			
9. Learning in multiagent systems			
Types of learning			
Cooperative learning in	•	Interactive exposure	
multiagent systems	•	Explanation Conversation	
Team learning	•	Didactical demonstration	
Concurrent learning			
Application domains for multiagent learning			
multiagent learning	•	Interactive exposure	
MAS research reports presentation	•	Conversation	
Dill: 1	•	Oral assessment	

Bibliography

- 1. M. Wooldridge, G. Weiss, and P.Ciancarini, editors: Agent-Oriented Software Engineering II Springer- Verlag Lecture Notes in Computer Science Volume 2222, February 2001.
- 2. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems: The Gaia Methodology. In ACM Transactions on Software Engineering Methodology, 12(3):317-370, July 2003.
- 3. Czibula, G., Sisteme multiagent în Inteligența Artificială Distribuită. Arhitecturi și aplicații. Editura RisoPrint, Cluj-Napoca, 2006

4. Weiss, G. (Ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, 1999

8.2 Seminar / laboratory	Teaching methods	Remarks
		The activity is structured as 2
		hours classes every
1. Administration of seminars. Survey of the	Interactive exposure	
sources of information available on Internet and Intranet	Explanation	
and included	 Conversation 	
2. Survey of the sources of information	Documentation	

available on Internet and Intranet; chosing the paper topic and scheduling the presentation.	Explanation Conversation
An agent based system (Project 1) will be developed using an open source agent development environment. The second project (Project 2) will be realized from scratch and documented. The software will have to demonstrate the use of multiple agents for some specific task.	
3. Problem definition and specification for Project 2	Lab assignmentExplanationConversation
4. Comments about the solution (problem analysis) and conceptual modeling of the problem using agents (Project 2). Demonstration of Project 1	 Lab assignment Explanation Conversation
5. Design documentation for Project 2	Lab assignmentExplanationConversation
6. The electronic version of the source code, test files and any other files required to test Project 2. Project 2 demonstration	Lab assignmentExplanationConversation

Bibliography

- 1. M. Wooldridge, G. Weiss, and P.Ciancarini, editors: Agent-Oriented Software Engineering II Springer- Verlag Lecture Notes in Computer Science Volume 2222, February 2001.
- 2. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems: The Gaia Methodology. In ACM Transactions on Software Engineering Methodology, 12(3):317-370, July 2003.
- 3. Czibula, G., Sisteme multiagent în Inteligența Artificială Distribuită. Arhitecturi și aplicații. Editura RisoPrint, Cluj-Napoca, 2006
- 4. Weiss, G. (Ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT Press, 1999

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the distributed artificial intelligence field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	A theoretical research report on a learning technique, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	40%
	The correctness and completeness of the accumulated knowledge.	Oral assessment	
10.5 Seminar/laboratory	A software project developed using an open source agent development environment	Evaluation of the project (documentation and demonstration)	15%
	A software project fully implemented, without using existing agent development	Evaluation of the project (software implementation, documentation and demonstration)	25%

	environments.	
10.6 Activity	Class (course, lab) attendance	15%

10.7 Minimum standard of performance

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Machine Learning domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

11. Labels ODD (Sustainable Development Goals)²

Not applicable.

Date: Signature of course coordinator Signature of seminar coordinator

03.04.2025 Prof. PhD Gabriela CZIBULA Prof. PhD Gabriela CZIBULA

Date of approval: Signature of the head of department

Assoc. prof. PhD. Adrian STERCA

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for <u>Sustainable Development</u> – if not applicable. If no label describes the discipline, delete them all and write <u>"Not applicable."</u>.