SYLLABUS

ADVANCED METHODS IN DATA ANALYSIS

University year 2025/2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Computer Science
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Applied Computational Intelligence
1.7. Form of education	Full time studies

2. Information regarding the discipline

2.1. Name of the dis	ciplir	ne Advanced	Advanced Methods in Data Analysis				Discipline code	MME8048
2.2. Course coordinator Prof. de				Prof. dr.	Horia F. P	^р ор		
2.3. Seminar coordinator					Prof. dr.	Horia F. P	^у ор	
2.4. Year of study	1	2.5. Semester	Semester 1 2.6. Type of evaluati			2.7. Disc	cipline regime	Compulsory

3. Total estimated time (hours/semester of didactic activities)

tal estimated time (nours) semester of an	1010010 010	01710100)			
3.1. Hours per week	4	of which: 3.2 course	2	3.3 seminar/laboratory/project	2
3.4. Total hours in the curriculum	56	of which: 3.5 course	28	3.6 seminar/laboratory/project	28
Time allotment for individual study (D) and	self-study activities (S	A)		hours
Learning using manual, course support, b	ibliogra	phy, course notes (SA)			30
Additional documentation (in libraries, or	n electro	nic platforms, field docu	ment	ation)	37
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					4
Evaluations					8
Other activities					-
3.7. Total individual study hours 119					
3.8. Total hours per semester	175				
3.9. Number of ECTS credits	er of ECTS credits 7				

4. Prerequisites (if necessary)

Trefequisites (if necessary)				
4.1. curriculum	Algorithmics, data structures, statistics			
4.2. competencies	Ability to write computer programs in a high level programming language			

5. Conditions (if necessary)

5.1. for the course	Students will attend the course with their mobile phones shut down
5.2. for the seminar /lab activities	Students will attend the seminar with their mobile phones shut down
	Room with computers as needed; high level programming language environment

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

• understanding and working with basic concepts in computational intelligence; • ability to approach and solve complex problems using various techniques of computational intelligence; • capability of information analysis and synthesis; • etic and fair behaviour, commitment to professional deontology; • good English communication skills.

6.2. Learning outcomes

Knowledge	 The graduate has the necessary knowledge to devise, model and design of complex software applications in the field of computational intelligence The graduate possesses the fundamental knowledge for modelling, being able to analyse real life problems and to translate them in concrete requirements and to design a corresponding software model
Skills	 The graduate can use specific language and terminology for the field of computational intelligence being able to communicate and interact with members of a team The graduate proves the capacity to reflect over own learning resources
Responsibility and autonomy:	 The graduate proves knowledge related to specifying the requirements of research activities in the domain of computer science in general and computational intelligence in particular and he/she understands the role of research in promoting progress The graduate knows and respects the ethical and legal principles and rules in scientific research

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To introduce the student in advanced methods of data analysis
7.2 Specific objective of the discipline	To present the field of intelligent data analysis as a novel research and application domain. To induce the necessity of intelligent data analysis methods by studying some relevant practical applications To offer the student the instruments that will allow him/her to develop different data analysis applications.

8. Content

8.1 Course	Teaching methods	Remarks
1: Administration and organization	Interactive exposure	
2: Introduction	Explanation	

Reference: [Han, ch. 1], [Mitchell, ch. 1]		
3: Introduction to Fuzzy sets		
Reference: [Klir, ch. 2, 3]		
4: Fuzzy logic, fuzzy reasoning		
Reference: [Klir, ch. 8, 10]		
5: Fuzzy control systems		
Reference: [Klir, ch. 12]		
6: Introduction to Rough sets		
Reference: [Pawlak]		
7: Applications of Rough sets	1	
Reference: [Ye, ch. 1], [5, ch. 3]	• Conversation	
8, 9: Fuzzy Clustering	Didactical demonstration	
Reference: [Han, ch. 7], [Ye, ch. 10]		
10, 11: Multivariate analysis	1	
Reference: [Ye, ch. 7, 8]		
12: Feature extraction, Performance analysis	1	
Reference: [Ye, ch. 16, 17]		
13, 14: Applications of data analysis	1	
Reference: [Ye, ch. 21, 24, 27], [Han, ch. 10, 11]		
Bibliography		
J. Han, M. Kamber, Data Mining: Concepts and Tec	hniaues. Academic Press. 2001	
G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Pren		
T. Mitchell, Machine Learning, McGraw Hill, 1996	,	
Z. Pawlak, Rough Sets, Polish Academy of Sciences	s, Gliwice, 2004	
N. Ye, The Handbook of Data Mining, Lawrence El		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administration. Survey of information sources		
available on Internet and Intranet. Chosing the		
paper topics and scheduling the presentations.		
puper copies and seneraling one presentations.	Interactive exposure	
2-3. Work to prepare the reports	Explanation	
4554	Conversation	
4-5. Delivery of theoretical report	Conversation	
6-7. Delivery of experimental report	-	
Bibliography	1	
. Б.Б.Подгарну J. Han, M. Kamber, Data Mining: Concepts and Tec	hniques Academic Press 2001	
G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Pren		
T Mitchell Machine Learning McCraw Hill 1006		

T. Mitchell, Machine Learning, McGraw Hill, 1996

Z. Pawlak, Rough Sets, Polish Academy of Sciences, Gliwice, 2004

N. Ye, The Handbook of Data Mining, Lawrence Elbaum Associates Publishers, 2003

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the intelligent data analysis field.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	40%
10.5 Seminar/laboratory	Two research reports, on experiments performed by the student, with given requirements, should be prepared and presented	Evaluation of the research reports (a written paper of about 10 pages and an oral presentation for each report)	2x20%

	Class attendance and activity		20%
ו 10.6 Minimum standard of ן	performance		
Analysis domain, that (s)he		ledge in a coherent form, that	rstanding of the Intelligent Data (s)he has the ability to establish
Penalty points are awarded	for delays in submission of prop	osed topic choices and submis	ssion of final reports.
	am is conditioned by the final grass s overall grade has to be at least		he written exam grade has to be at ted after the end of the 14-th
11. Labels ODD (Sustaina Not applicable.	ble Development Goals) ²		
Date: 10/4/2025	Signature of course co	ordinator Sign	ature of seminar coordinator
, ,	Prof. dr. Horia F.	Pop	Prof. dr. Horia F. Pop

Date of approval:

Assoc.prof.phd. Adrian STERCA

Signature of the head of department

[.]

² Keep only the labels that, according to the <u>Procedure for applying ODD labels in the academic process</u>, suit the discipline and delete the others, including the general one for Sustainable Development – if not applicable. If no label describes the discipline, delete them all and write "Not applicable.".