SYLLABUS

Modular arithmetics and cryptography

University year 2025-2026

1. Information regarding the programme

1.1. Higher education institution	Babeş-Bolyai University
1.2. Faculty	Mathematics and Computer Science
1.3. Department	Mathematics
1.4. Field of study	Computer Science
1.5. Study cycle	Master
1.6. Study programme/Qualification	Applied Computational Intelligence
1.7. Form of education	Full-time education

2. Information regarding the discipline

2.1. Name of the di	scipl	ne Modula	Modular arithmetics and cryptography					MME3051
2.2. Course coordinator Prof. PhD. Se					Septimiu Crivei			
2.3. Seminar coordinator				Prof. l	PhD. S	Septimiu Crivei		
2.4. Year of study	1	2.5. Semester	ster 1 2.6. Type of evaluat			2	.7. Discipline regime	DF

3. Total estimated time (hours/semester of didactic activities)

3.1. Hours per week	3	of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4. Total hours in the curriculum	42	of which: 3.5 course	28	3.6 seminar/laborator	14
Time allotment for individual study (ID) and self-study activities (SA)					
Learning using manual, course support, bibliography, course notes (SA)					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					
Evaluations					
Other activities:					
3.7. Total individual study hours108					
3.8. Total hours per semester	3.8. Total hours per semester150				
3.9. Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab activities	

6.1. Specific competencies acquired ¹

¹ One can choose either competences or learning outcomes, or both. If only one option is chosen, the row related to the other option will be deleted, and the kept one will be numbered 6.

Professional/essential competencies	C1.5 Development of program units and corresponding documentation C3.3 Use of computer science and mathematical models and tools for solving specific problems in the application field
Transversal competencies	CT2 Efficient fulfillment of organized activities in an inter-disciplinary group and development of empathic abilities of inter-personal communication, relationship and collaboration with various groups

6.2. Learning outcomes

Knowledge	The student is able to ensure the formation of skills specific to the Mathematics and Algorithmics-related disciplines needed to complete the assignments. The student knows fundamental notions related to Cryptography, and methods of applying them to areas of science related to Mathematics and Computer Science.
Skills	The graduate will develop mathematical and algorithmical thinking, progressing from a procedural/computational understanding of mathematics to a broad understanding encompassing logical reasoning, generalization, abstraction, and formal proof.
Responsibility and autonomy:	The student is able explore some applied mathematical content independently, drawing on ideas and tools from previous coursework to extend their understanding. The student will independently extend applied mathematical ideas and arguments from previous coursework to a mathematical/computer science topic not previously studied.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Study of the main algorithms in cryptography
7.2 Specific objective of the discipline	Implementation and use of algorithms in cryptographic applications

8. Content

8.1 Course	Teaching methods	Remarks
1. Algorithm complexity, modular	exposition, algorithmization	
arithmetics		

2. Primality and factorization	exposition, algorithmization
3. Finite fields and discrete logarithms	exposition, algorithmization
4. Classical cryptography	exposition, algorithmization
5. DES, AES	exposition, algorithmization
6. Stream ciphers	exposition, algorithmization
7. Block ciphers	exposition, algorithmization
8. RSA cryptosystem	exposition, algorithmization
9. ElGamal cryptosystem	exposition, algorithmization
10. Hash functions	exposition, algorithmization
11. Digital signatures	exposition, algorithmization
12. Key-related protocols	exposition, algorithmization
13. Elliptic curve cryptography	exposition, algorithmization
14. Quantum cryptography	exposition, algorithmization

Bibliography

1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.

2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.

- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

8.2 Seminar / laboratory	Teaching methods	Remarks
 Algorithm complexity, modular arithmetics 	problematization, exercise	The seminar is scheduled as 2 hours every second week
2. Primality and factorization	problematization, exercise	
3. Finite fields and discrete logarithms	problematization, exercise	
4. Classical cryptography	problematization, exercise	
5. Block ciphers	problematization, exercise	
6. Public-key cryptography	problematization, exercise	
7. Digital signatures	problematization, exercise	

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content is directed towards applications of cryptography. The topic is present in many master programs from other universities and has special interest for prospective employers.

10. Evaluation

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percentage of final grade
10.4 Course	Use of basic concepts in	Presentation	1/3 of the grade
10.4 Course	examples		

10.5 Seminar/laboratory	Problem solving, project presentation	Test, practical examination	2/3 of the grade					
10.6 Minimum standard of performance								
The final grade must be at least 5.								

11. Labels ODD (Sustainable Development Goals)²

General label for Sustainable Development									
							9 INDUSTRY, INNOVATION AND INFRASTRUCTURE		

Date: 11.04.2025

Signature of course coordinator

Prof. PhD. Septimiu Crivei

Signature of seminar coordinator

Т

Prof. PhD. Septimiu Crivei

Date of approval: 25.04.2025

Signature of the head of department

Prof. PhD. Andrei Mărcuș

² Keep only the labels that, according to the *Procedure for applying ODD labels in the academic process*, suit the discipline and delete the others, including the general one for *Sustainable Development* – if not applicable. If no label describes the discipline, delete them all and write *"Not applicable."*.